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 Literature Review 
 

1.1 Pavement Texture 
Pavement texture is defined by the irregularities on a pavement surface that 
deviate from a true perfectly flat surface. The texture of a pavement has been 
deemed one of the most important characteristics of the road surface given that 
it determines most tire/pavement interactions such as: noise, friction, rolling 
resistance, etc. (Maguire and Carme, 2015). Pavement texture typically requires 
specialized equipment and mathematical tools in order to be characterized. 

 

A linear profile is the simplest representation of pavement texture. The profile 
is a two-dimensional representation of the surface texture obtained using a 
sensor device, such as a laser, that is described by two coordinates: distance and 
height, in the longitudinal and vertical directions, respectively (Zuniga-Garcia, 
2017). Profiles can be considered stationary, random functions of the distance 
along the surface (Sanberg, 1987). Using Fourier analysis, these functions can 
be mathematically represented as a series of sines and cosine waves of various 
amplitudes and spatial frequencies or wavelengths. The texture wavelength is 
the spatial period of a wave. Typically, the wavelength is symbolized by the 
Greek letter lambda (λ) and reported in units of length (m or mm.). The spatial 
frequency (fs) is defined as the inverse of the wavelength and given in cycle per 
meter. The texture amplitude is defined as the peak-to-peak height difference 
(Zuniga-Garcia, 2017). Figure 1.1 illustrates the main parameters on a linear 
texture profile. Advances in technology allow for the measurement and analysis 
of 3D surface profiles. Profiles collected along the transverse direction of the 
pavement are also known as cross-sectional pavement profiles in the literature. 

 

 
Figure 1.1 Basic terminology: wavelength (1), amplitude (2) 
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1.1.1 Surface Texture Components 
For the purpose of facilitating analysis, the irregularities of the pavement surface 
are usually divided into four components: unevenness or roughness, 
megatexture, macrotexture, and microtexture. Each category is a function of the 
domains of texture wavelengths or spatial frequency, given that they are related 
by the relation 𝑓𝑓𝑠𝑠 = 1�𝜆𝜆 (Serigos et al., 2016). Figure 1.2 illustrates the surface
texture spectrum with the four main texture components and their respective 
wavelength or spatial frequency domain. 

Figure 1.2 Definition of fundamental texture classes, as a function of the wavelengths or 
spatial frequency 

Unevenness, also referred to as roughness, is the texture component that 
describes the irregularities in the pavement surface that affect the ride quality, 
smoothness, and serviceability. Its reference length would be equivalent to a 
short stretch of road. (AASHTO, 2008; Zuniga, 2017). Megatexture is defined 
by the distress, defects, or waviness of the road surface, and its wavelengths are 
in the same order of size as the tire/pavement interface. This type of texture is 
typically the easiest to appreciate with the naked eye. Examples of megatexture 
include ruts, potholes, and major joints and cracks (AASHTO, 2008). 
Macrotexture refers to the large-scale texture of the pavement surface due to the 
aggregate particle size and arrangement. In flexible pavements, mixture 
properties such as aggregate shape, size, and gradation control the macrotexture. 
In rigid pavements, the method of finishing the surface is what controls the 
macrotexture. This includes methods such as dragging, tinning, grooving width 
and spacing, and direction of the texturing. State-of-the-art practice 
methodologies used for measuring pavement texture at highway speed typically 
account only for macrotexture (AASHTO, 2008, Zuniga, 2017, Serigos et al., 
2016). Microtexture alludes to the sub-visible or microscopic asperities of the 
aggregate surface, which control the contact between the tire rubber and the 
pavement surface (Serigos et al., 2016). Microtexture is a function of the 
individual aggregate particle mineralogy and petrology, the aggregate source 
(natural or manufactured), and is affected by the environmental effects and the 
action of traffic (Zuniga, 2017).  

Each of the four texture components influence the interaction tire/pavement to 
varying degrees. Smit reported that the unevenness of the pavement plays a 
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significant role in the rolling resistance of the pavement, while the megatexture 
influences both rolling resistance and tire/pavement noise (Smit, 2008). 
However, the two components that seem to have a significant influence on a 
variety of surface characteristics (such as tire/pavement noise and skid 
resistance) are microtexture and macrotexture. Serigos and Zuniga agreed that 
when microtexture and macrotexture were taken into consideration on skid 
resistance correlation models, together they can account for at least 70 percent 
of the total variance in skid resistance on the road (Serigos et al., 2016; Zuniga, 
2018). Furthermore, most traffic noise analysis research indicates that the peak 
of traffic noise occurs within the macrotexture wavelength spectrum although it 
is still not fully understood how those two parameters interact (Smit et al., 2016). 

 

1.1.2 Summary Statistics 
Summary statistics are the base of pavement texture characterization. Each 
component of pavement texture is associated with specific parameters that 
provide a general description for the texture profile. At the unevenness and 
megatexture levels, the most common and well-defined parameter is the 
International Roughness Index (IRI). Examples of parameters used at the 
macrotexture level include the mean profile depth (MPD) and the mean texture 
depth (MTD). In practice, either of these parameters is used to describe the 
pavement texture, however using only one of these texture statistics provides an 
incomplete description of the height distribution along the pavement profile. 
Pavements with similar MPDs can have completely different textures hence, 
additional parameters, such as kurtosis or skewness, can be used to provide a 
more comprehensive characterization. Microtexture is the hardest component to 
characterize in the field. Currently, there are no standardized methods to 
characterize this level of texture, but the same parameters used to characterize 
macrotexture could be defined at smaller wavelengths to characterize 
microtexture. 
 
The set of statistics used to quantify pavement texture can be broken down into 
two main categories: spatial and spectral parameters. Spatial parameters are 
those which are calculated in the spatial domain and are scale dependent, 
meaning the same parameters are defined separately at different levels of texture. 
For example, MPD can be defined at both the macro and microtexture scale. In 
contrast, spectral parameters are calculated in the frequency domain and 
considered to be scale independent. They are estimated along a wide range of 
texture wavelengths in order to avoid complexity of defining the same 
parameters at different scales (Serigos et al., 2016). 

 

1.1.2.1 Spatial Parameters 
Spatial texture parameters are divided into four categories: amplitude, spacing, 
hybrid, and functional parameters. Amplitude parameters, also known as height 
parameters, consist of the statistical distribution of height values along the z-
axis. Spacing parameters consider the periodicity of the data within the 
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distribution. Hybrid parameters are a combination of spacing and amplitude. 
Functional parameters give information about the surface structure based on the 
material bearing ratio curve. The bearing ratio curve is the cumulative 
probability distribution of the amplitude distribution function which gives the 
probability of a texture profile having a certain height, Z, at any position X. A 
summary of the most commonly used spatial parameters found in the literature 
is shown in Table 1.1, where hi represents the height of the measured profile, N 
the number of coordinates, and Δx the horizontal distance between coordinates. 

Table 1.1 Spatial texture parameters used for pavement texture characterization 
(Zuniga, 2017) 

Statistic Equation 

Mean Profile Depth 
(MPD) 

Height Average 
(Ra) 

Maximum Height 
(Rz) 

Root Mean Square 
(RMS) 

Skewness 
(Rsk) 

Kurtosis 
(Rku) 

Two-Point Slope 
Variance 
(SV2pts) 

Six-Point Slope 
Variance 
(SV6pts) 

1.1.2.2 Spectral Parameters 
Spectral parameters refer to parameters obtained in the frequency domain. 
Obtaining spectral parameters requires the use of Fourier analysis to examine 
the surface texture. A Fourier transform can decompose a texture profile into a 
function of sinusoidal waves. A common approach is to determine the 
parameters from the texture spectrum. The technical specification ISO 1373-4 
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(2008) describes the procedure to obtain the texture spectrum expressed in 
octave or one-third octave bands. The parameter used to characterize the texture 
spectrum is known as the texture level (Ltx,λ). The texture level is a logarithmic 
transformation of an amplitude representation of the texture profile having a 
center wavelength equal to lambda (λ) and reported in units of decibels (dB). 
This approach has been mainly used to find correlations between tire/pavement 
noise and the pavement texture, however, it has also been used in research 
studies intended to correlate texture and friction (Sandber and Descornet, 1980; 
Miller et al., 2011). 
  
Another approach, known as Power Spectral Density (PSD), has commonly been 
used to analyze pavement texture in the frequency domain. The PSD is a 
description of how the energy of a pavement texture profile is distributed over 
the different frequencies. The PSD is obtained by applying a Fourier transform 
to the linear profile of a pavement surface to decompose it into a series of 
sinusoidal functions with discrete frequencies. Because so many sinusoids must 
be added together to build complex road profiles, individual amplitudes are 
almost always small. Hence, the Fourier transform is adjusted to show how the 
variance of the profiles is distributed over a set of sinusoids. This adjustment is 
known as the Power Spectral Density (Sayers and Karamihas, 1998). Serigos et 
al (2014) used the slope and intercept of the linearized PSD curve to characterize 
the surface macro and microtexture. The study observed a strong correlation 
between the log of the PSD and the log of the frequency in most of their sampled 
test surfaces.  
 
Wavelet transform (WT) or wavelet analysis is an analytical developed to 
overcome the shortcomings of the Fourier transform. Wavelets are functions that 
satisfy certain mathematical requirements used to represent data. The wavelet 
transform can be used to decompose a signal into different frequency 
components and then, present each component with a resolution matched to its 
scale. The major advantage of the WT is that it allows for the analysis of a 
localized area of a larger signal hence, it can capture revealing aspects of the 
data that other signal analysis techniques might miss, such as, trends, breakdown 
points, discontinuities in higher derivatives, etc. In road roughness analysis, the 
wavelet analysis can reveal localized surface irregularities such as surface 
depressions, potholes, surface heaving and bumps (Wei et al, 2002). 
 
Other studies have used fractal and multi-fractal theory to characterize texture. 
Fractal is a mathematical set that has a fractal dimension which usually exceeds 
its topological dimension and may be nonintegral (Mandelbrot, 2004; 
Mandelbrot, 1983). Fractals are typically self-similar patterns. Self-similarity 
means that they are “the same from near as from far”. The fractal theory for 
pavement assumes that texture irregularities follow approximately the same 
pattern at different scales. Therefore, patterns observed at a lower frequencies 
could repeat at higher frequencies. In order to appreciate the similarity of the 
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texture patterns at different levels, the patterns need to be scaled by different 
factors known as the fractal dimension in the coordinate axis (Rajaei, 2017). 
Villani et al (2014) evaluated pavement surface friction properties using fractal 
analysis and developed a methodology that allows for the selection of aggregate 
type and mix design recipe for optimized skid resistance performance. 
 
The spectral parameters described above are constructed from solid physical 
bases but are too complex for Pavement Engineers to use on a routine basis, as 
the statistics accompanying the models require significant time to be computed 
(Kane at al, 2015). To overcome this issue, new simpler approaches based on 
modern signal processing techniques have been developed. Among these 
techniques the simplest and most promising one is known as the Hilbert-Huang 
Transform (HHT) (Huang and Pan, 2006). The HHT is an empirical approach 
rather than a theoretical approach (like the Fourier or Laplace transform) that 
provides a way to decompose a signal into a set of functions and obtain 
instantaneous amplitudes and frequencies.  

 

1.1.3 Texture Measurements 
In terms of texture, there is wide variety of techniques and equipment used to 
measure texture based on the texture component of interest. Typically, 
transportation agencies collect data for roughness, megatexture and 
macrotexture for pavement management purposes. However, no standard has 
been developed to measure microtexture in the field so numerous efforts and 
research studies are being conducted to develop an affordable, efficient and 
reliable way to measure the finest component of the surface profile (Zuniga, 
2017).  

 

1.1.3.1 Roughness/Unevenness and Megatexture Levels 
A topological survey can be used at the unevenness level to describe the 
pavement texture by obtaining the International Roughness Index (IRI). IRI was 
developed in 1986 by the World Bank as one the first standardized primary 
indicator for the serviceability of highway network to road users (Sayers et al., 
1986). The index measures pavement roughness in terms of the number of inches 
per mile (in/mi) or meters per kilometer (m/km) that a theoretical car model 
“jumps” as the van is driven along the roadway. Figure 1.3 shows a schematic 
of a Road Surface Tester (RST), a survey vehicle used to measure IRI. The 
measurements of IRI are typically within a wavelength range of 1.3 to 30 meters. 
(Sayers et al., 1986). In addition, these measurements can be further used to 
characterize the pavement at the megatexture level using the highest resolution 
possible. An alternative way to characterize pavement at the megatexture level 
is to use a similar survey vehicle to collect pavement rut depths. Rutting is a 
surface depression in the wheel path that results from the accumulation of plastic 
strains or permanent deformation occurring in the different layers of the 
pavement structure due to the action of repeated traffic loads (Little et al., 2018) 
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Figure 1.3 Schematic of a RST used to measured IRI and rut depth (VTI, 2021) 

 

1.1.3.2 Macrotexture Level 
Measurements taken on the macrotexture level can be collected in two different 
ways: with on-spot or in motion measurements. On-spot measurements typically 
require traffic control in order for technicians to collect the data in a safely 
manner and a significant number of measurements to get a representative sample 
for the pavement. Examples of on-spot measurements involve volumetric 
techniques such as the Sand Patch Test (SPT) or non-contact measurements such 
as the Circular Track Meter (CTM). In-motion testing typically involves taking 
continuous measurements on the pavement as a vehicle or trailer equipped with 
proper instrumentation drives on the road. While these test methods do not 
require traffic control, current laser technology does not have a high enough 
resolution and sampling frequency to capture microtexture while driving at 
highway speeds. An example of in motion testing methods is the Laser Crack 
Measurement System (LCMS) 

1.1.3.2.1 Sand Patch Test (SPT) 
Some of the most common volumetric techniques used to measure macrotexture 
on pavement are the SPT, grease patch test and outflow meter test. Out of the 
three, the SPT is the simplest and most commonly used by transportation 
agencies around the world. The method involves applying a known volume, 
which is typically 25 mm3, of either solid glass spheres of uniform size or Ottawa 
natural silica sand on a relatively uniform, not distressed section of the pavement 
surface. The sand is later spread in a circular motion with a spreading tool, as 
shown in Figure 1.4. Once the roughly circular patch of sand is made, four 
equally spaced diameters are measured and averaged to compute the area of the 
sand patch. The known volume of sand is then divided by the area of the circle 
using Equation 1.1 and reported as the mean texture depth (MTD) (ASTM 
E965, 2019). The grease patch method is a variation used by NASA in which 
grease is used instead of sand or glass spheres (Zuniga, 2017). The outflow meter 
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is a transparent vertical cylinder that is placed on the top of the pavement surface, 
it is filled with water and the time for the water level to fall by a fixed amount is 
measured and reported as the outflow time (ASTM E2380, 2015). 
 

 
 
where 𝑆𝑆 is the sample volume for the material in mm3 and D is the average 
diameter covered by the material in mm.  

 

 
Figure 1.4 SPT equipment (left), and field data collection (right) 

 

An alternative to indirect measurements of the texture profiles involves more 
modern techniques using non-contact lasers, such as the Circular Track Meter 
(CTM) or the Laser Texture Scanner (LTS) (Zuniga, 2017). The information 
collected from these devices can be used to compute various profile statistics 
such as the mean profile depth (MPD) and the root mean square (RMS), as 
defined in Table 1.1.  

1.1.3.2.2 Circular Track Meter (CTM) 
The CTM is a device used to measure MPD and RMS. It consists of a laser 
displacement sensor that is mounted on an arm that rotates clockwise at a fixed 
elevation from the measured surface and a notebook computer that is used to 
control the device and save all the processed data as shown in Figure 1.5 CTM 
(left), and CTM segments5. The device measures a 2D profile of a circle 284 mm 
in diameter and 892 mm in circumference. The profile is divided into eight 
segments with an arc length of 111.5 mm. The MPD is determined for each of 
the segments of the circle and the MPD reported as the average of the eight 
segments (ASTM 2157, 2015). The device later proceeds to calculate the RMS 
for the profile using the equation for RMS provided in Table 1.1. A major 
drawback of the CTM arises when measuring textures of concrete pavement. 
Given that the system measures texture along a circumference, it makes it 
difficult to measure longitudinal and traverse texture separately. These two types 
of textures are very important for rigid pavements, so it is recommended that 
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other techniques be used for that type of analysis. Another significant drawback 
is that it is time consuming for data collection purposes. 

 

 
Figure 1.5 CTM (left), and CTM segments (right) 

 

1.1.3.3 Microtexture Level 
There are other powerful laser devices capable of scanning and characterizing 
pavement texture at a macrotexture level, but the vertical and lateral resolution 
of these sensors is so high that they can also capture the first decade of aggregate 
microtexture. Currently, there are no standard methods to measure microtexture 
of pavements, but there have been multiple attempts at measuring microtexture 
using this advanced laser technology. 

1.1.3.3.1 Line Texture Scanner (LTS) 
The LTS is a lightweight and portable equipment designed to scan pavement 
surface coordinates in order to characterize its texture contents. It uses a laser 
sensor to scan the surface coordinate of parallel straight lines with a sampling 
rate of one point every 0.015 mm and a maximum scan area of 100 by 75 mm. 
The LTS computes the MPD, RMS, texture profile index, and estimated texture 
depth (ETD), which is an estimation of MTD based on MPD using an empirical 
equation, as shown in Equation 2.2. The resolution of the device allows it to 
measure and describe the two decades of macrotexture and the first decade of 
microtexture. However, scans performed at the highest resolution can take 
approximately two hours, making it impractical for field studies (Serigos et al., 
2014). Zuniga (2017) also reports that the device is also not as reliable as the 
CTM, and researchers have experienced many operational problems with the 
LTS. Figure 1.6 illustrates the LTS device along with the scanned 3D surface 
profile plot. 
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where MPD and ETD are both measured in units of mm. 

 
Figure 1.6 LTS (left), and 3D plot of measured surface (right) (Zuniga, 2017) 

 

1.1.3.3.2 Line Laser Scanner (LLS) 
The LLS is a surface profiling system developed by the University of Texas at 
Austin to characterize macro- and microtexture (Figure 1.7). The device 
consists of a high-resolution line-laser scanner and a translation stage. The LLS 
can collect a maximum of 800 points in the transverse direction and up to 600 
mm in the longitudinal direction. The equipment has an improved sampling rate 
that allows for the characterization of the two decades of macrotexture the first 
decade of microtexture (Zuniga, 2017). The main advantage that the LLS has 
over the LTS is its speed. The LLS can scan a wider area at a very high resolution 
in 15 seconds as opposed to two hours. Zuniga stated that not only is the LLS 
more efficient and reliable than both the LTS and CTM, but it also has a higher 
vertical resolution of 0.5 microns compared to the 15 and 3 microns of the LTS 
and CTM, respectively. The equipment is suitable to be used out in the field, so 
long as a covering mat can be placed over the translation stage to prevent 
sunlight from affecting the measurements of the lasers (Zuniga, 2017). 
 

 
Figure 1.7 LLS (left), and field operation (right) 
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1.1.3.3.3 LS-40 Portable 3D Surface Analyzer 
The LS-40 is a portable 3D laser scanner (Figure 1.8) with ultrahigh resolution 
capable of scanning a 4.5 in. by 4 in. pavement surface and collect 3D texture 
data with a height resolution of 0.01 mm and a lateral resolution of 0.05 mm (Li 
et al. 2017). The 3D surface data provided by the LS-40 is used to calculate MPD 
and RMS by processing thousands of profiles over the entirety of the scanned 
surface according to the specifications of ASTM-1845 (2015). This piece of 
equipment can be used both under laboratory and field conditions to collect 
2,048 by 2,448 cloud points for pavement texture characterization. Li et al. 
(2017) report that the LS-40 is not capable of providing detailed 3D texture scans 
with a resolution high enough to reach the first decade of microtexture, but it can 
provide other pavement surface features such as the aggregate form factor and 
multiple aggregate contour measurements to estimate characteristics at the 
microtexture level. 
 

 
Figure 1.8 LS-40 Portable 3D Surface Analyzer (left), 3D surface scan (right) (Li et al., 

2017) 
 

Another approach to circumvent the difficulties of measuring pavement 
microtexture is to use other measurements as surrogates for microtexture. 
Examples of alternative measurements for microtexture include the polish 
resistance of the aggregates, the British Pendulum Number (BPN) and image 
analysis techniques. 

1.1.3.3.4 Polished Stone Value (PSV) 
The PSV of aggregates is measured using a standardized test (BSI, 2013) where 
samples of aggregate are set in resin to form specimens that are mounted on the 
circumference of a wheel (Figure 1.9). This is then rotated for a period of time 
while a rubber tire is loaded onto the aggregate surface and a polishing medium 
trickled into the interface. At the end of the polishing process, the skidding 
resistance of the specimens is measured and compared with the results from 
specimens made with a control stone to calculate the PSV (Roe and Hartshorne, 
1998). This measurement quantifies the resistance of an aggregate to the 
polishing action of vehicle tires under conditions similar to those occurring on a 
road surface. In the early 1970s, a relationship was established to predict 



12 
 

skidding resistance, in terms of side friction coefficient, from the PSV of the 
aggregate and expected traffic level in terms Average Daily Traffic (ADT) 
(Szatkowski and Hosking, 1972). However, it has been found that under certain 
circumstances the skid resistance achieved in practice does not match the one 
predicted by the relationship, and these discrepancies have given cause for 
concern. Furthermore, present-day traffic levels frequently require extrapolation 
of the original formula beyond the range of the data on which it was based. This 
can lead to over-optimistic or -pessimistic predictions of performance. Hence a 
good proportion of modern-day skid prediction research has emphasized  
updating the empirical relationship between PSV and skid resistance for a wider 
array of traffic levels and aggregate types (Roe and Hartshorne, 1998). 

 

 
Figure 1.9 Accelerated polishing machine and aggregates (Roe and Hartshorne, 1998). 

 

1.1.3.3.5 Aggregate Imaging System (AIMS) 
The AIMS is a system that uses image analysis techniques to analyze the particle 
geometry of coarse and fine aggregate through three independent properties: 
form, angularity, and surface texture. The equipment consists of a camera, two 
different types of lighting schemes, and microscope technology (Masad, 2005), 
as shown in Figure 1.10. The AIMS analyzes the captured images of the 
aggregates using different techniques for each of the independent properties. The 
Wavelet method is used to analyze the aggregate texture; the gradient method 
and radius method are used to analyze the angularity of the aggregate; and the 
three-dimensional form of the aggregate is analyzed using sphericity and shape 
factors (Masad, 2005). 
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Figure 1.10 AIMS device 

 

1.2 Pavement Friction and Skid Resistance 
Pavement friction is defined as the force that is generated as a result of vehicle 
tires rolling or sliding over a pavement surface. This force resists the relative 
motion between the tire and the pavement (Hall et al., 2009). Friction is typically 
characterized by the non-dimensional friction coefficient, which is the ratio of 
the tangential friction force to the perpendicular force applied on the pavement, 
as per Equation 1.3. 
 

 
 
where 𝜇𝜇 is the friction coefficient, 𝐹𝐹𝑡𝑡 is the tangential (tractive) force applied at 
the tire/pavement interface, and 𝐹𝐹𝑣𝑣 is the dynamic load on the tire perpendicular 
to the pavement. 
 
Skid resistance is defined as the ability of the traveled surface of the pavement 
to prevent loss of tire traction (AASHTO, 2008). Skid resistance of pavements 
plays a critical role in road safety. Even with the high degree of complexity 
involved in highway crashes, the potential causes of these accidents can still be 
classified into three broad categories: driver related, vehicle related and road 
condition related (Noyce et al., 2005). Transportation agencies have little to no 
control over factors such as driver behavior, vehicle malfunctions or severe 
weather; however, they do have some control over pavement skid resistance. 
Several studies have shown that as the pavement skid resistance decreases the 
number of accidents on the road increases. Hence proper monitoring and 
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management of skid resistance in the highway network is required to control and 
reduce the number of road accidents (Serigos, 2016). 

 

1.2.1 Friction and Skid Resistance Characterization  
Most of the frictional force generated on the pavement is due to acceleration, 
braking or steering of the vehicles tires against the pavement (Flintsch et al., 
2012). Two types of friction that are typically measured by transportation 
agencies are the longitudinal and side force friction. Longitudinal friction 
develops along the driving direction and has two extreme modes of operation: 
free-rolling (no braking), and constant brake. For free-rolling mode, the speed 
between the tire circumference and the pavement is equal to zero; this speed is 
also known as slip speed. Whereas in the constant break mode the slip speed 
increases from zero to the potential maximum of the speed of the vehicle 
(Flintsch et al., 2012). For any condition in between, the slip speed is known as 
variable slip speed and is measured as a percentage of the maximum speed of 
the vehicle. Side forced friction is the force generated as a result of the vehicle 
tires changing direction or compensating for pavement cross-slope or the effects 
of wind on the vehicle (AASHTO, 2008). The basic relationship between the 
forces acting on the vehicle tire and the pavement surface as the vehicle steers 
around a curve, changes lanes, or compensates for lateral forces follows 
Equation 1.4 (Hall, Smith and Littleton, 2008).  
 

 
 
where 𝐹𝐹𝑠𝑠 is the side friction, 𝑆𝑆 is the vehicle speed in mph., 𝑅𝑅 is the radius of the 
path of the vehicle’s center of gravity in ft., and 𝑒𝑒 is the pavement super-
elevation in ft./ft. 
 
The skid resistance of a pavement is often represented by a parameter called the 
skid number (SN). The SN is determined by performing pavement friction 
testing using the locked-wheel method. As describe in ASTM E 274 (2015), the 
skid number will equal to the force required to slide a locked test tire at a given 
speed, divided by the effective wheel load and multiplied by 100. SN can also 
be estimated by multiplying the coefficient of friction by 100. This parameter is 
highly dependent on the texture of the pavement surface, and it is highly 
sensitive to wetness, pavement distresses, and temperature (Zuniga, 2017; 
Serigos 2016). 
 

1.2.1.1 Friction Mechanisms 
The frictional forces that develop between the pavement surface and a skidding 
vehicle tire are the result of a complex interaction of mechanisms such as: 
hysteresis, adhesion, abrasion and shear of the tire material. However, the 
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hysteresis and adhesion mechanisms account for the most significant 
contributions in the development of frictional forces at the pavement-tire 
interface (Figure 1.11) (AASHTO, 2008; Hall et al, 2009; Choubane et al., 
2004). 

 

 
Figure 1.11 Frictional forces between pavement and vehicle (Hall et al., 2009) 

 

The adhesion component of the frictional force relates to the contact area 
between the rubber tire and the pavement surface. It is a result of Van der Waals 
forces developed at the tire-pavement interface. Van der Waals forces reflect the 
small-scale interlocking of microstructures as the micro-asperities of the two 
surfaces come in contact with one another (Hall et al, 2008). Adhesion is a 
function of the interface shear strength and the contact area. It is very sensitive 
to changes in the microtexture of the aggregate particles. This mechanism 
typically dominates on smooth-texture and dry pavements (AASHTO, 2008; 
Hall et al, 2009). The hysteresis mechanism results from the energy dissipation 
due to the bulk deformation of the rubber tire around bulges and depressions in 
the pavements surface as it traverses along the road. This deformation is 
commonly referred to as enveloping of the tire around the texture. As a tire 
compresses against the pavement, the stress distribution causes the deformation 
energy to be stored within the rubber. When the tire relaxes, a fraction of the 
stored energy is recovered while the remaining portion is lost in the form of heat 
(hysteresis), which is irreversible. It is this loss that leaves a net-frictional force 
that aids in stopping the forward motion of vehicles (NASEM, 2009). Unlike 
adhesion, hysteresis is most responsive to the macrotexture at the pavement 
surface and typically dominates under wet conditions and on rough-textured 
pavements. (AASHTO, 2008; Hall et al, 2009; Henry, 2000). 
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The coefficient of friction is a function of the slip speed of the vehicle (Henry, 
2000). As seen in Figure 1.12, the coefficient of friction grows rapidly with 
increasing tire slip until it reaches the peak friction value. This value is highly 
dependent on microtexture and will typically occur at the critical slip which is a 
range from 10 to 30 percent slip (Hall et al, 2009). Any further increase in tire 
slip results in a decrease in the coefficient of friction until it reaches a value 
known as the coefficient of sliding friction. This occurs once the wheel is fully 
locked and the tire starts skidding over the pavement surface (Hall et al, 2009; 
Flintsch et al, 2012). The macrotexture of the pavement controls the slope at 
which the coefficient of friction drops after reaching its peak. The higher the 
macrotexture of the pavement, the shallower the slope and the smaller the loss 
in the coefficient of friction (Hall et al., 2009). 

 

 
Figure 1.12 Friction coefficient and slip speed curve (Hall et al., 2009) 

 

1.2.2 Skid Resistance Measurement: Operational Principles 
and Equipment 

Friction measuring devices utilize the main principle of a rubber sliding over the 
road surface and measuring the reaction force. The major operating principles of 
frictional measurement equipment for pavements are the slider, longitudinal 
friction coefficient (LFC) and side force coefficient (SFC) principles.  
 
The slider principle encompasses devices used for stationary testing. It entails 
the use of a slider attached either to the foot of a pendulum arm or to a rotating 
head, which slows down on contact with the pavement surface. The rate of 
deceleration is used to derive a value representing the skid resistance of the road 
(Flintsch et al., 2012). Typically, slider operational devices are used to measure 
low-speed skid resistance of pavements. They are also characterized for being 
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stationary, relatively inexpensive and require traffic control in order to be safely 
operated in the field. The longitudinal friction coefficient is represented as the 
ratio of vertical forces to drag forces and its principle consists of the application 
of a braking force to a test wheel so that it rotates more slowly than the forward 
speed of the vehicle. This makes the test wheel slip over the surface and allows 
for the development of frictional forces. LFC principle-based devices are divided 
into three modes: locked-wheel, fixed-slip and variable-slip, each one having a 
different percentage of tire slip. All the test methods that are LFC-based consist 
of pulled device methods that utilize one or two full-scale test tires to measure 
friction properties. The side friction coefficient is represented as the ratio of 
vertical forces to sideway forces and its principle consists of using side-forced 
friction testers that use an instrumented measuring wheel set at an angle, known 
as slip angle, to the direction of travel of the vehicle. The slip angle induces 
friction between the tire and pavement as it makes the tire slip over the road 
surface (Flintsch et al., 2012). The following subsections describe the most 
commonly used equipment to measure pavement surface friction. 
 

1.2.2.1 The British Pendulum Test (BPT) 
The BPT is a manually operated test that provides an on-spot measurement of 
the surface friction. It evaluates skid resistance at low speeds by measuring the 
friction coefficient at a skidding speed of approximately 10 km/h (6 mph) 
(Henry, 2000), but some can go up to 12.5 km/h (7.8 mph). The test consists on 
using a pendulum-type tester with a standard rubber slider and a drag pointer. 
After calibration, the pendulum is raised to a locked position and then released 
to allow the slider to swing and slip on the pavement surface that has been 
manually wetted. A drag pointer swings along with the pendulum and indicates 
the British Pendulum Number (BPN) once the pendulum reaches its highest 
point on the first swing. The more friction the pavement has, the more it retards 
the swing of the pendulum, hence the higher the BPN reading. (ASTM E 303, 
1998). BPN measurements are used as a surrogate of microtexture 
measurements, given that microtexture plays a very significant role at low-speed 
friction (Zuniga, 2017). Figure 1.13 illustrates the BPT equipment used during 
field operation. 

 

 
Figure 1.13 BPT (left) and field operation (right) 
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1.2.2.2 Dynamic Friction Tester (DFT) 
The DFT is a modular system that is controlled electronically to measure friction 
by the slider principle. It measures the torque required to rotate a horizontal 
spinning disk fitted with three spring-loaded rubber sliders in a circular path as 
it contacts the pavement surface. Water is introduced in front of the slider by 
means of an elevated water tank to emulate wet weather conditions, as shown in 
Figure 1.14. The results for this test are typically recorded at speeds of 20, 40, 
60 and 80 km/h (12, 25, 37 and 50 mph) and later plotted to obtain a speed versus 
friction relationship (AASHTO, 2008). Studies have shown that the values of 
DFT friction, when slip speed is 12 mph, are highly correlated with BPN 
(Wambold et al, 1998). Like the BPT, one of the main drawbacks of the DFT is 
that it requires traffic control in order to be safely operated in the field on in-situ 
surfaces. 
 

 
Figure 1.14 DFT (left) and field operation (right) (Zuniga, 2017) 

 

1.2.2.3 GripTester and Micro-GripTester 
The GripTester and Micro-GripTester are a type of continuous friction 
measuring equipment capable of dynamically measuring the longitudinal skid 
resistance coefficient of the pavement in terms of Grip Number (GN), or the 
coefficient of friction. These devices used fixed slip mode for measuring friction 
experienced by vehicles with ABS braking system. They are characterized by 
maintaining a constant slip that is typically between 10 and 20 percent as a 
vertical load is applied to the test tire (Henry, 2000). They have a single 
measuring wheel, fitted with a special smooth tire mounted on an axle designed 
to measure both the horizontal drag force and the vertical load force (Thomas, 
2008). The difference between the GripTester and the Micro-GripTester is the 
scale of the device. The GripTester is towed behind a vehicle and uses 
measurement speeds that range from 5 to 100 km/h (3 to 62 mph) (Kogbara et 
al., 2016). The micro-GripTester is push manually by a technician at an average 
speed of 0.7 m/s (2.3 ft/s). Figures 1.15 and 1.16 display the GripTester and 
Micro-GripTester devices, respectively, and their operation in the field. 
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Figure 1.15 GripTester device (left) and field operation (right). 

 

 
Figure 1.16 Micro-GripTester device (left) and field operation (right) 

 
1.2.2.4 Locked-Wheel Skid Tester (LWT) 

The LWT is the most commonly used method for measuring pavement friction 
at high-speeds in the United States (Figure 1.17) (ASTM E 274, 2015; Henry, 
2000). It is meant to test the frictional properties of the surface under emergency 
braking conditions for vehicles without anti-lock braking systems (ABS) by 
testing under a locked wheel mode. This implies that the wheel cannot rotate 
hence the slip speed of the tire equals the vehicle speed (Henry, 2000). The skid 
device consists of a smooth reference tire (ASTM E 524-08, 2015) locked into a 
device that is installed on a trailer that includes a water distribution system 
connected to a water tank placed on the moving vehicle. The trailer is then towed 
behind the vehicle at a speed of 80 km/h (50 mph). Once the vehicle reaches the 
desired speed, the water system sprays water in front of the smooth test wheel 
and then the braking system is engaged. The wheel is kept blocked for around 
one second and the average SN over that period is recorded (Flintsch et al., 
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2012). Texas uses smooth tires given that they are very sensitive to macrotexture, 
but transportation agencies have also used ribbed tires in the past. Ribbed tires 
have proven to be more sensitive to microtexture than its smooth counterpart 
(Hall et al, 2009).  
 

 
Figure 1.17 LWT in operation 

 
1.2.2.5 Sideway-Force Coefficient Routine Investigation 
Machine (SCRIM) 

The SCRIM is a surface friction tester commonly used in Europe to measure 
wet-road skidding resistance (Figure 1.18). The machine operates by applying 
a freely rotating fifth wheel at an angle of 20° to the direction of travel on the 
road surface under a known load. Controlled water jets within the machine wet 
the pavement surface directly in front of the test wheel to emulate wet weather 
conditions. The vertical load and sideway force generated by the test wheel’s 
frictional resistance to skidding are measured using transducers, and the output 
of those forces is then used to calculate an SFC value. The SCRIM can take 
continuous measurements of the SFC at speeds of 50 km/h (30 mph) (Pms.ie, 
2017). 
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Figure 1.18 SCRIM equipment (Pms.ie, 2017) 

1.2.2.6 Harmonization of Friction Measurements 
Due to the vast variety of friction measuring devices and all the different skid 
values one can obtain from these tests, making comparisons of skid values across 
different friction measuring devices is not trivial. For this reason, the Permanent 
International Association of Road Congresses (PIARC) developed the 
International Friction Index (IFI), an index that consists of two parameters: the 
friction number (F60) and the speed constant (𝑆𝑆𝑝𝑝) to harmonize friction 
measurements across different friction measuring equipment to a common 
calibrated index (ASTM E1960-07, 2015; Fuentes and Gunaratne, 2011). This 
index is generally reported as IFI (F60, 𝑆𝑆𝑝𝑝) and the relationship follows 
Equations 1.5 and 1.6 as follows: 

where 𝐹𝐹𝑅𝑅𝑆𝑆 is the friction measurement obtained from a specific device at slip 
speed S (km/h); 𝐹𝐹60 is the prediction of calibrated friction number at 60 km/h; 
𝑆𝑆𝑝𝑝 is  th e prediction fo r th e ca librated sp eed co nstant; 𝐴𝐴, 𝐵𝐵, 𝐶𝐶 are regression 
parameters specific to a friction-measuring device; and 𝑎𝑎, 𝑏𝑏 ar e regression 
parameters specific to a texture-measuring device used to measure the mean 
profile depth (MPD). However, it should be noted that the IFI was reviewed and 
implemented by several highway agencies. There are mixed reviews about the 
accuracy and efficiency of the IFI to harmonize friction measurements into a 
single index. Furthermore, a drawback of the IFI is that any friction measuring  
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devices that did not participate in the international experiment does not have an 
equation to convert from its output of skid to the IFI (Hall, Smith and Littleton, 
2008). 
 

1.2.3 Prediction of Skid Resistance Practices 
For transportation agencies worldwide, it is of utmost importance that most of 
the highway network has an adequate skid resistance to reduce the probability 
of wet-weather crashes. Nevertheless, there are three limitations that affect 
nearly all currently available skid measuring devices: 1) they are static devices 
that require traffic control to be used in the field, 2) technology used in the 
devices is improving but measurement repeatability is not, and the biggest 
limitation of them all, 3) the in-motion equipment is highly inefficient as it 
requires significant volumes of water to test a few miles of highway. For 
instance, to use the GripTester a 200-gallon water tank must first be filled with 
clean water. Once the tank is filled, surveyors can continuously measure skid 
resistance in terms of GN for approximately twenty miles before having to refill 
the tank. As the mileage in a highway network scales it becomes clear that 
continuous measurements of skid resistance for all roadways is not a sustainable 
operation, hence agencies must prioritize their major highway links when 
collecting skid measurements. This is the reason why agencies and research 
institutions have developed alternative techniques such as mathematical models 
to predict skid resistance on pavement surfaces. 
 

1.2.3.1 Empirical Models 
Using statistical analysis to comprehend the relationship between skid resistance 
and pavement characteristics is a common approach to estimate pavement 
surface friction. Serigos et al (2014) surveyed a total of 28 in-service flexible 
pavement sections within the state of Texas with multiple configurations of fine 
and coarse aggregate macrotexture and smooth and rough microtexture. They 
measured both pavement macrotexture and microtexture using the LTS device 
and used a wide array of texture statistics as predictors to estimate low speed 
skid resistance measured in terms of BPN. Their results showed that using 
spectral parameters that incorporate microtexture can increase the predictive 
power of the model from 0.67 to 0.76 in R2. Furthermore, they showed that using 
spatial parameters, such as MPD, can yield prediction values for BPN that are 
as good as those obtained using spectral parameters, so long as both microtexture 
and the type of pavement surface are accounted for. 
 
Zuniga-Garcia (2017) surveyed a total of 36 pavements across Texas including 
different surface types such as hot-mix asphalt, surface treatments and concrete 
sidewalks. The friction data was collected using the BPT, the DFT and the 
Micro-GripTester whereas macro and microtexture measurements were 
collected using the CTM and the LLS. Furthermore, when characterizing the 
microtexture only the active area of the profile was considered to compute the 
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summary statistics. In this study, Zuniga-Garcia tested three different skid 
prediction models using panel data analysis. One model included only 
macrotexture information, the second model included only microtexture data, 
and the final model incorporated both macro and microtexture information. The 
main findings of this study were as follows: 1) including the surface type of the 
pavement when modeling friction is important as there is no unique relationship 
between texture and friction; the relationship between friction and texture is 
strong but it varies depending on the type of surface, 2) MPD was the most 
significant parameter at the macro and microtexture levels out of the eight 
summary statistics that were tested to explain the variance in friction 
measurements and 3) all skid prediction measurements obtained using the BPT 
and the DFT were significantly improved once both macro and microtexture data 
were incorporated into the model, increasing the predictive power in R2 from 
0.70 up to 0.80. 
 
Rado and Kane (2014) used the Hilbert-Huang Transform to analyze texture and 
friction relationships and found a set of parameters calculated from basic 
functions of the texture profile to be highly correlated with pavement friction. 
More recently, Rado, Kane and Timmons (2015) expanded on the study 
performed in 2014 and surveyed a total of eleven pavement surfaces in The 
French Institute of Science and Technology for Transport, Development and 
Networks test track to determine how the wavelengths, number and shape of 
pavement surface asperities affect pavement friction using the empirical mode 
decomposition of the Hilbert-Huang Transform to decompose the texture. All 
their texture measurements were collected using the CTM, whereas the friction 
measurements were collected using the DFT at test speeds of 20, 40 and 60 kph. 
Once decomposed, the texture’s “sharpness” and “density” was quantified and 
correlated to friction. The study concluded that using solely the texture density 
in the models can account up to 77% of the variability in the friction 
measurements of the DFT, texture sharpness alone can account up to 66%, but 
the product of density and sharpness was able to account up to 85% of the 
friction measurements. This study further confirmed that accounting for 
pavement microtexture when predicting friction can increase the predictive 
power of the model significantly. 
 
Subedi, Wu and Abadie (2016) tested a total of 22 asphalt pavement sections 
across 15 parishes in the state of Louisiana. They collected friction 
measurements using the LWT and the DFT and collected texture data on the 
pavements using the CTM. The pavements they tested consisted of 12.5-mm 
Superpave, 19-mm Superpave, stone mastic asphalt and open-graded friction 
course, the most common mixes used in Louisiana. Furthermore, once the 
researchers knew what aggregates were used in each of the test sections, they 
obtained a blend PSV, based on the PSV of the aggregates used in the mix. These 
information plus the design lane ADT, ADT growth factor and other gradation 
parameters were used to estimate the MPD of the road, SN at 40 km/h using 
either a smooth (SN40S) or ribbed (SN40R) test tire on the LWT, and the low-
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speed skid resistance from the DFT20, which was used as a surrogate for 
microtexture. The results of their research are as follows: 1) while the prediction 
values obtained for MPD showed some discrepancies, it is thought that the 
predictions were only able to capture most of the field macrotexture component, 
but none of the microtexture, 2) they could estimate DFT20 with an R2 of 0.88 
using solely the PSV of the aggregates and traffic information, 3) incorporating 
macrotexture (predicted MPD) and microtexture (DFT20) into a non-linear 
prediction model for skid resistance using smooth tires yielded a relationship 
that can account for 73% of the variability in the SN40S measurements, and 4) 
by combining the predicted MPD and predicted SN40S, they could properly 
predict SN40R with an R2 of 0.75. This study showed that incorporating mix 
design parameters and traffic information into the prediction model can be used 
as an alternative to avoid taking texture measurements of the network and still 
provide good enough prediction of pavement skid resistance. 
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 Development and Proposal of 
Skid Resistance Prediction Method 

2.1 General Overview of Methodology 
This chapter provides a summary of the methodology developed and used to 
create friction prediction models with a high degree of accuracy based on high-
speed measurements of pavement surface profiles. The overall process consists 
of five major stages: 

1. Data collection
2. Data processing
3. Feature engineering
4. Pavement surface prediction
5. Skid prediction modelling

At the data collection stage, the research team used a prototype data measuring 
and collection system to simultaneously collect friction and profile/texture data, 
on the same wheel path and at high speeds. During the data processing step, 
stringent criteria were enforced to ensure both texture and friction data were of 
the best possible quality before feeding them into the prediction models. At the 
feature engineering level, the texture statistics were computed and processed to 
enhance the efficiency of the classification and prediction models. The pavement 
surface prediction stage is where the processed texture data were used in 
machine learning models to create the most accurate prediction of the pavement 
surface at each of the surveyed sites. This step was crucial given that the 
literature indicates that the best friction prediction models are those that account 
for the type of pavement surface or mix. The final stage of the process consisted 
of creating the prediction model that best predicts skid resistance, given field 
texture data. A general overview of this procedure is provided in Figure 2.1, 
where the main stages are shown with a black background and all processes 
conducted within each stage are shown underneath with a blue background. 
Section 2.2 provides detailed specification of the data collection prototype 
developed by the University of Texas at Austin. An in-depth explanation of each 
of the stages, shown in Figure 2.1, is provided in sections 2.3, 2.4, 2.5, and 2.6. 
Finally, Section 2.7 describes the data processing performed on all the static data 
collection devices also used in this project. 
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Figure 2.1 General overview of methodology from data collection to skid prediction 
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2.2 Field Data Collection 
The research team selected 29 pavement surfaces that cover a wide range of 
textures and skid numbers encountered in Texas. It was important to cover the 
most prevalent pavement surfaces in a way that is representative of the 
distribution of pavement mixes across the state. During this project, the focus 
was on flexible pavement so rigid pavement were not included. Table 2.1 shows 
the breakdown of flexible pavements surveyed in this study. 

 
Table 2.1 Final selection of pavement surfaces 

Pavement Type Pavement Surface Number of Samples 

Hot mix asphalt Dense Coarse Mix (Type C,D) 4 
Hot mix asphalt Dense Fine Mix (TOM and Type F) 2 
Hot mix asphalt Stone Matrix Asphalt (SMA) 3 
Hot mix asphalt Porous Friction Course (PFC) 7 

Surface treatment Seal coat (Grade 3 and 4) 8 
Surface treatment Seal coat (Grade 5) 4 
Surface treatment Micro surfacing 1 

 

All 29 pavement sections were tested dynamically, using continuous measuring 
equipment moving at highway speeds. This testing included an in-house 
developed data collection prototype and TxDOT’s LWT. In addition, three of 
these sections received a full battery of static texture and friction tests to validate 
the measurements obtained by TxDOT and the research team. These three 
sections were located along SH95, US79, and US290. Details of these tests are 
given in Section 3.1.2. 

 

2.2.1 Testing Equipment 
For the static testing, traffic control was coordinated with TxDOT to ensure the 
safety of both the researchers conducting the tests and the drivers on the road. In 
terms of texture, the researchers performed two traditional and well-accepted 
tests: the SPT and the CTM. Additionally, the research team deployed the LLS 
since it has been proven in previous research studies to be more accurate and 
efficient than other equipment capable of capturing macro and microtexture. In 
terms of friction, the researchers ran the DFT as it is one of the most traditional 
and widely accepted tests. All stationary tests were performed for the sake of 
comparison and validation of statistics obtained from the dynamic testing 
devices. 
 
For the dynamic testing, friction data was collected using the conventional 
methods employed by TxDOT. Skid resistance data were collected using a LWT 
trailer. The SN measurements from the LWT were used as the ground truth in 
this research study. The research team also collected skid resistance and 
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pavement texture using a newly developed data collection prototype that 
combines a skid measuring trailer (namely, the GripTester) and a line laser 
sensor mounted on the trailer. The prototype can measure the full spectrum of 
pavement macrotexture (wavelengths of 50 mm to 0.5 mm) and a portion of 
microtexture (wavelengths of 0.5 mm to 0.322 mm) at highway speeds while 
simultaneously collecting skid resistance measurements on the same spot the 
laser is scanning.  

 

2.2.2 Prototype Equipment Specifications 
The GripTester was selected for measuring skid resistance due to its wide range 
of testing speeds (5 to 130 km/h), good repeatability, reproducibility, and its 
ability to grant the operator full control of the water flow used to achieve a given 
water thickness between the test tire and the pavement surface. In compliance 
with ASTM E2340, the device uses a smooth thread measuring wheel of 25.4 
cm (10 in. ) diameter that, when in motion, simulates a fixed wheel with 15% 
continuous slippage. The measurement tire is equipped with an automatic 
watering system that provides enough water to create a precise water thickness 
set by the operator. The amount of water that flows to the wheel self-adjusts 
depending on the traveling speed. The device was retrofitted with a laser sensor 
to capture texture profiles that are in sync with the GripTester’s built-in encoder. 
The specifications of the laser sensor are shown in Table 2.2. The laser used had 
a vertical accuracy of 2.6 microns. 
 

Table 2.2 Laser sensor specifications 

Characteristics Specifications 
Mounting conditions Diffuse reflection 

Working distance 400 mm 

Z-Range (+/-) 150 mm 

 
Light source 

Wavelength 660 nm 

Laser class Class 3B 

Output 130 mW 

Points per profile 2,048 

Resolution lateral 0. 161 mm 

Sampling cycle (max) 25,000 profiles/s 

Repeatability 2.6 µm 

Linearity (% of Z-Range) ±0.01 

Environmental resistance 

Enclosure rating IP67 

Ambient temperature 0-50 C° (non-condensing) 

Vibration resistance 2 g, 20–500 Hz ±0.01 (IEC 60068-2-6) 

Shock resistance 15 g (IEC 60068-2-27) 
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In the transverse direction, the laser has a resolution of 0.161 mm, meaning the 
spacing in between each point within the laser line is on average 0.161 mm, with 
a total distance of 330 mm for a single profile. In the longitudinal direction, or 
the direction of traffic, a profile was obtained every 40 mm so as to obtain 25 
texture reading for each grip number value. Lastly, the resolution in the vertical 
direction of the sensor is 5.0 µm. Figure 2.2 shows the axis/direction convention 
for the line laser sensor being used. 

 

 
Figure 2.2 Axis convention and direction of movement (Zuniga-Garcia, 2017) 

 
As indicated earlier, the GripTester was used for measuring skid resistance at a 
wide range of testing speeds. The combination of transverse profiles allows the 
3D modeling of the surface without the need of adding longitudinal profiles. The 
laser sensor is synchronized with the GripTester and centered in front of the 
measuring tire and the water outlet. The laser sensor can measure a texture 
profile that is 330 mm in width on the transverse direction, enabling the 
researchers to capture the tire’s contact area with the pavement which is roughly 
50 mm (2 in.) wide. The two systems work together as they are both 
simultaneously triggered to collect data. For the GripTester, the trigger is 
converted to distance, and, for every meter of travel, the drag and load force are 
averaged and saved. For the laser sensor, the trigger is used to capture a single 
profile of height values. When the tires are inflated to 20 psi, the diameter is 254 
mm, resulting in profile spacing of approximately 40 mm, subject to small 
fluctuations as the tire expands and contracts. More importantly, the trigger 
sends a signal to both systems to initiate data collection, keeping both data 
streams synchronized. Figure 2.3 illustrates the data collection prototype. 
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Figure 2.3 Data collection prototype 

 

2.2.3 Data Collection Protocol Using the Prototype 
The test starts when the survey vehicle reaches the test section that has been 
marked and pre- programmed into a GPS device. Near the test site, the system 
is connected to the test vehicle. The prototype has only two cables for data 
communication with the PC and is operated from inside the vehicle. A minimum 
of two individuals are needed: one for driving the vehicle and one for operating 
the software. With the vehicle stationary, the controlling computer awaits the 
trigger to initiate data collection. When the vehicle starts to move and reaches 
testing speed (50 mph), the user can monitor real-time data from the laser sensor 
(profiles, MPD, exposure of camera, and threshold of laser brightness) and real-
time data from the GripTester (GN, target water flow, actual water flow, and 
vehicle speed). Furthermore, as data are collected, the operator can make notes 
that are saved with the data and stamped with the corresponding location. This 
is important when there is a specific start or stop in the test section or for the 
operator to denote changes in pavement. The software operator can check the 
real-time data and monitor the data collection system in a rear-view camera for 
proper operation. After completion of the test, the system is stored inside the 
vehicle to reduce wear on the test tire used to measure skid. 

 

2.3 Prototype Texture Data Processing 
This section explains how the raw data measured by the data collection prototype 
were processed before computing statistics or running prediction models.  
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2.3.1 Data Quality Control 
Before processing the raw data, meticulous inspections were conducted to 
remove any faulty or invalid raw measurements. In terms of the measured skid, 
the GripTester provides a file for each survey performed, summarizing the 
distance travelled, GN measurements at every meter, load on the device, 
measuring speed, and water flow. Based on all the preliminary testing done on 
the prototype, the research team agreed upon certain filtering criteria to isolate 
valid GNs from invalid ones. A GN is considered valid under these conditions: 
 
• the load on the GripTester device is between 100 and 400 Newtons, 
• the water flow to the wheel is ± 5 liters per meter from the mode, and 
• the speed of the surveying vehicle is higher than or equal to 47 mph. 

 
The first filter was implemented to omit measurements taken when the 
GripTester went over a pothole, debris, or some other pavement distress that 
might make the device bounce and the wheel load fluctuate out of range. The 
second filter avoids measurements where the water flow to the wheel is not 
sufficient to provide a water thickness of about 0.5 mm. Finally, the last criterion 
eliminates measurements taken before the survey vehicle reaches highway 
speeds. Typically, during preliminary testing, this speed would be at least 80 kph 
(47 mph). Figure 2.4 illustrates one of the quality control graphs used to isolate 
good measurements from invalid ones. The top part of the graph shows GN 
measurements that met all the criteria, highlighted in orange.  
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Figure 2.4 Skid resistance quality control chart: (top) GN measurements, (second) load 

force  on GripTester, (third) vehicle speed, (bottom) water flow 
 

The texture data collected with the laser sensor mounted on the GripTester were 
first filtered to keep only data for which there was valid GN information. In other 
words, if the friction data for a given portion of the pavement section were 
invalid and filtered out, then all the texture data corresponding to that interval of 
length were also filtered out. This filtering process enabled the research team to 
work with valid measurements for skid and texture for the same locations along 
the pavement. The next step consists of trimming the scan area to isolate the 100 
mm that correspond to the wheel path where the GripTester’s wheel is measuring 
skid. In terms of length, this trimming process removes the leftmost and 
rightmost 114 mm of the cross-sectional profile. 
 

2.3.2 Texture Data Processing 
The above-mentioned preliminary filtering ensured every pavement cross-
sectional profile had a corresponding valid skid number. The last thing that 
remains is to process the raw texture data from the sensor. Texture data were 
processed using a series of steps (shown in Figure 2.5) to ensure the data were 
of good quality before computing texture statistics. 
 
These five steps are the foundation of texture data processing to ensure a high 
degree of quality in the final predictions. The research team performed extensive 
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research in each of those areas and developed robust algorithms capable of 
performing all these tasks. The first step is critical: to separate dead pixels 
(invalid data) from actual measurements. This is known as invalid point 
detection. The next step requires having an algorithm that can consistently and 
reliably detects and removes noise from profiles to prevent outliers from 
skewing or biasing the texture statistics. A robust imputation algorithm allowed 
the research team to work with complete datasets and remove any uncertainty 
and bias potentially introduced by missing data, i.e., the noise that was removed 
at the previous step. Detrending might be considered the simplest out of all the 
steps, but it is important to have a consensus on what is the best method to 
remove polynomial trends from a profile and what metric to use when removing 
an offset in the data. Finally, data transformation is a process that allows the user 
to assess the same texture data from a different point of view. For instance, by 
applying the Fourier transform, the data are transformed from the spatial domain 
into the spectral/frequency domain, where metrics such as the power spectral 
density (PSD) of the signal can be quantified. Examples of other transformations 
that have been used in pavement analysis include the Laplace transform, the 
Hilbert-Huang transform, and the wavelet transform. 

 

 
Figure 2.5 Texture data processing steps 

 

2.3.2.1 Invalid Point Detection and Removal 
From this point on, invalid points are referred to as dropouts to avoid any 
confusion between dropout values and values that are just noise within the data. 
The research team defined dropouts as invalid readings at the edges of the 
profile. These dropouts are generated by a width correction algorithm in the 
sensor, whose purpose is to keep the distance between points at a constant 
interval in case the sensor’s elevation changes. The camera captures less 
information across the x-axis the closer the sensor is to the scanning surface; 
thus, dropouts are imputed at the edges of the profiles to correct for the distortion 
of distance spacing. The left side of Figure 2.6 illustrates this fact, where on the 
near side (the height where the sensor is closest to the surface), the number of 
dropouts at the edges of the profile is significant but decreases as the laser sensor 
is moved closer to the far side. When collecting data, the sensor must be placed 
at the reference distance, so it has room to oscillate between the near and far side 
as it collects data. The right side of Figure 2.6 portrays an example where 
dropout values are shown as negative elevations with a high magnitude. The 
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valid measurements typically occur in the middle section of the profile, in this 
case, in places where the elevation is around 17 mm. 
 

 
 

Figure 2.6 Schematic portraying how the number of dropouts reduces as the laser line 
approaches the far side (left); 2D view of data dropouts in a pavement profile (right) 

 

At this stage, profiles are free from dropouts because of the trimming performed 
at the quality control stage. However, the sensor’s software outputs a value of -
97.4 mm whenever the laser goes out of range or there is extreme light 
interference such that the camera is unable to capture the true surface elevation. 
This phenomenon simplifies identification of these other invalid points, as it 
implies that any value that is equal to -97.4 mm. is an invalid point and must be 
removed from the data. However, these types of points were removed at the 
noise removal stage. 

 

2.3.2.2 Noise Detection and Removal 
In signal processing, noise is broadly defined as anything that affects the signal 
that is being measured. Noise can arise from a variety of sources, related to the 
physics, sensors, data acquisition, or transmission. Some examples include 
thermal noise, electrical noise, electromagnetic noise, or even the effect of 
unmodelled physical effects. For the application of pavement surface scanning, 
often field conditions are not optimal when scanning a pavement surface, which 
leads to the introduction of noise within the signal. The most common instances 
of noise found in a profile are white noise, spikes, and flat signals. 

2.3.2.2.1 White Noise 
White noise is a random signal having equal intensity at different frequencies, 
giving it a constant PSD. This type of noise is inevitable and can even 
masquerade as microtexture within the profile. For this reason, it is important to 
note the resolution of the laser in the vertical direction before assuming that the 
laser has accurately captured the microtexture component. Figure 2.7 shows an 
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example of this phenomenon, where white noise is added to a sine wave. To 
interpret the figure, the reader should assume that the sine wave at the top of 
Figure 2.7 was a representation of a true pavement profile. The middle part was 
white noise generated by a sensor used to measure the profile (notice the scales 
are different). The true profile of the surface was smooth and had no 
microtexture; nonetheless the sensor introduced this white noise as it scanned 
the pavement. The output of the scan is given by the bottom graph in Figure 2.7. 
The white noise added by the sensor resembles micro-asperities that do not exist 
in the true profile shown on the top. To mitigate the influence of induced 
microtexture due to sensor white noise, low-pass filters could be used to remove 
wavelengths smaller than the vertical resolution of the sensor; however, in this 
project the implementation of such a filter was not necessary. 
 

 
Figure 2.7 Example of how white noise can be mistaken for microtexture: sine wave 

(top), white noise (middle), signal and noise (bottom) 
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2.3.2.2.2 Spike Noise 
Spikes are defined as any data point that shows as a short-duration, drastic 
elevation change. Spikes are usually due to the laser light reflecting on a shiny 
surface or not being captured by the camera. These points break the trend of the 
pavement profile and can be identified by visual inspection. Some spikes are 
extreme outliers, and their detection and removal can be automated with ease. 
However, there are also mild outliers that still break the trend of the profile, but 
their detection and removal process is not as straightforward and requires careful 
consideration. An easy way to distinguish between a mild and extreme outlier is 
that extreme outliers are usually the maximum or minimum points of the profile. 
Mild outliers, on the other hand, are not the extreme points of the profile, but 
they still clearly break the trend of the data. Figure 2.8 illustrates examples of 
both types of spikes. It should be noticed that there is an argument that 
downward spikes could be the results of cracks or joints in the pavement and not 
necessarily noise. The validity of that argument depends on the spacing of points 
along the profile. The sensor being used has a spacing of 0.161 mm between 
points. According to TxDOT construction specifications for surface treatments, 
TxDOT seals cracks with a width in the range of 1/16” (1.5 mm) to 1/2” (13 
mm). This means that the laser should be able to capture at least nine points for 
the smallest crack width that TxDOT determines to be problematic enough to 
require sealing. Recall that a spike is a single data point. This argument is made 
to guarantee that the mild or extreme downward spikes in these profiles are not 
joints or cracks on the pavement. 

 

 
Figure 2.8 Different types of spikes: extreme outlier (top), mild outlier (bottom) 
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2.3.2.2.3 Flat Signal Noise 
Flat signals are the result of the combination of a low exposure time for the 
camera and a very dark pavement surface. In this situation, the sensor blurs the 
measured information and outputs a flat line where the elevation at multiple 
locations is the same as the last “good” point measured by the sensor. It should 
also be mentioned that a more powerful laser and corresponding filters could 
help in minimizing flat signals. Figure 2.9 shows an example of flat signals 
within a profile. 

 

 
Figure 2.9 Example of flat signals 

 

The next subsection specifies the algorithm used to detect and remove spikes 
and flat signal noise in the collected profiles. 

2.3.2.2.4 Sabillon-Orellana Filtering Algorithm (SOFA) 
The filtering algorithm developed by the research team to deal with these 
instances of noise is known as the SOFA, which stands for Sabillon-Orellana 
Filtering Algorithm. This algorithm uses boxplots and the difference between 
consecutive points to consistently detect and remove all instances of spikes and 
flatlines along the profiles in a timely manner. The SOFA consists of a 
calibration phase and eight filtering stages: 

 
 1) Pre-processing  2) Boxplot outlier removal 
 3) Flag signal removal  4) Difference removal 
 5) Spiked flatline removal  6) Fine-tuned spiked removal 
 7) Mid-flatline spike removal  8) Endpoint pre-imputation 
 

In the calibration phase the algorithm processes at least 2,000 profiles collected 
with the laser sensor used for field data collection. This allows the SOFA to 
adjust to the specifications of any sensor that is chosen. The calibration phase is 
used to determine five metrics: 1) a lower bound for what would be considered 
an extreme difference between two points (usually the 5th percentile), 2) an upper 
bound for that same extreme difference (usually the 95th percentile), 3) a fine-
tuning parameter to remove a specific type of spike from the profile (usually the 
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98th percentile of extreme differences), 4) an absolute lower bound for which 
any point that has an elevation lower than it, is an extreme outlier and, 5) an 
absolute upper bound for which any point that has an elevation higher than it, is 
an extreme outlier. 
 
Once the calibration phase is over, those five metrics are used as threshold inputs 
in the SOFA for the eight filtering stages. To visualize what SOFA does, a 
sample profile was selected from the data. This profile shows most instances of 
noise that are removed at every stage of the algorithm. As this section discusses 
each of the subsequent stages of SOFA, a picture of this profile will be shown 
with the output of the algorithm. The sample profile can be observed in Figure 
2.10. 
 

 
Figure 2.10 Sample raw profile 

 

The pre-processing stage consists of three steps: pre-imputation, offset 
suppression and difference computation. At the pre-imputation step, the 
algorithm imputes the value of -97.4 anywhere in the profile that might have 
missing data. This is to ensure that the dataset is complete as future stages in the 
algorithm do not work if there are missing data. The offset suppression step’s 
goal is to center the profile around 0.0 mm in the vertical direction. To do this, 
the median of the profile is computed and subtracted from the whole profile. 
Figure 2.11 illustrates the pre-imputation and offset suppression stage on the 
sample profile. 
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Figure 2.11 Pre-imputation step with imputed values highlighted in red (top) and offset 

suppression step with a highlighted horizontal line at 0.0 mm (bottom) 
 

Lastly, at the difference computation step the algorithm computes two vectors: 
 

1) The Backward Difference (BD): This vector considers a point, 𝑝𝑝𝑖𝑖 , within the 
profile and the point immediately behind it, 𝑝𝑝𝑖𝑖−1, and takes the difference of the two 
as follows: 
 

 
 
2) The Forward Difference (FD): This vector considers a point, 𝑝𝑝𝑖𝑖 , within the profile 
and the point immediately in front of it, 𝑝𝑝𝑖𝑖+1, and takes the difference of the two as 
follows: 
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Because of the way the BD vector is defined, there is a problem when the first 
point in the profile is analyzed since there is no point immediately behind it. FD 
suffers the same limitation when analyzing the last point. To accommodate for 
this issue, the first and last two points in the profile are used to compute these 
vectors but they are not a part of the final denoised profile. That is, once the 
filtering process is completed, the first two points and last two points are 
trimmed away.  
 
The second stage involves using boxplots to remove any extreme outliers from 
the profile. Using the fourth (Q1) and fifth (Q3) metrics from the calibration, the 
average interquartile range (IQR) of the profile is computed as the difference 
between Q3 and Q1. In this dataset, these statistics were determined to be: Q1= 
-3.74 mm,Q3 =3 .42 mm and IQR = 0.94 mm. The boxplot filter is then defined 
as any value that is more extreme than either of these two quartiles by more than 
three times the interquartile range as shown below. 
 

 
 
where X is the elevation at any point along the profile. Figure 2.12 shows the 
output of the boxplot filter. Using the values stated above, the threshold values 
for the boxplot filter are as follows: 

 
• If 𝑋𝑋 < −6.58 𝑚𝑚𝑚𝑚, then remove the point 
• If 𝑋𝑋 > 6.26 𝑚𝑚𝑚𝑚, then remove the point 
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Figure 2.12 Boxplot filter with threshold shown as red horizontal dashed lines and 
removed data points highlighted in red (top) and profile after boxplot filter has been 

applied (bottom). 
 

The third step of the SOFA removes flat signals from the profile. As noted in the 
discussion above, flat signals blur the measured information and output a flat 
line where the elevation at multiple locations is the same as the last “good” point 
measured by the sensor. This implies that the first point in the flat signal is valid, 
but all the others are not. Hence, this step removes from the profile any point 
that an entry in the 𝐵𝐵𝑀𝑀 vector where 𝐵𝐵𝑀𝑀 = 0. Figure 2.13 shows the output of 
the flat signal removal. 
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Figure 2.13 Profile with removed data points highlighted in red (top) and profile after all 

flat signals have been removed (bottom). 
 

The fourth stage removes mild spikes from the profile. Here the first and second 
calibration metrics (T1 and T2, respectively) from the calibration stage are used 
to remove all mild spikes from the profile. For the dataset that was used in this 
study, it was determined that T1 and T2 were -0.21 and 0.21 mm., respectively. 
The research team acknowledges that there is a small probability that there could 
be valid data points that meet this criterion, however, the proportion of such 
points is minuscule when compared to the data points that meet this criterion but 
are indeed spikes. For this reason, this is a tradeoff that the research team is 
willing to take. Thus, 0.21 mm was the threshold value used to differentiate a 
mild outlier from the rest of the data. The detection and removal criteria are as 
follows: 
 
• If (𝐵𝐵𝑀𝑀𝑖𝑖 > 0.21 AND 𝐹𝐹𝑀𝑀𝑖𝑖 > 0.21), then remove the point 
• If (𝐵𝐵𝑀𝑀𝑖𝑖 < −0.21 AND 𝐹𝐹𝑀𝑀𝑖𝑖 < −0.21), then remove the point 

 
Figure 2.15 shows the output of the difference removal. 
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Figure 2.14 Profile with removed data points highlighted in red (top) and profile after mild 

spikes have been removed (bottom). 
 

These last three steps combined can detect and remove about 88% of noisy data 
points based on a visual inspection of a sample of 250 profiles coming from 
different pavement surfaces. All other stages fine- tune the algorithm to get that 
percentage of detection and removal as close as possible to 100%. The fifth stage 
of the algorithm consists of removing the first point in a flatline, whenever that 
first point was a spike. However, in this case, the threshold for the difference in 
elevation to identify this spike has been increased from 0.21 to 2 mm in 
magnitude. 2 mm is the value obtained when the IQR multiplied by 2 is rounded 
up to the nearest integer. This value was arbitrarily selected and carries no 
statistical significance, but empirically it is able to remove the spikes that still 
remain in the data. This empirical value is used instead of 0.21 mm because the 
trend of the data proceeding the first point in a flat signa is unknown. Figure 
2.15 shows the output of the spiked flatline removal. 
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Figure 2.15 : Profile with removed data points highlighted in red (top) and profile after 

spiked flatline removal has been applied (bottom). 
 

The sixth stage is a fine-tuning of spike detection that captures mild spikes that 
were not removed in the second or fourth stages. The threshold used at this stage 
is the third metric computed in the calibration algorithm. For the dataset being 
used, this threshold was equal to 0.90 mm. This implementation works as 
follows. 
 
• If (𝐵𝐵𝑀𝑀𝑖𝑖+1 > 0.9 AND 𝐹𝐹𝑀𝑀𝑖𝑖 < −0.9), then remove the point 
• If (𝐵𝐵𝑀𝑀𝑖𝑖 < −0.9 AND 𝐹𝐹𝑀𝑀𝑖𝑖+1 > 0.9), then remove the point 
• If (𝐵𝐵𝑀𝑀𝑖𝑖 > 0.9 AND 𝐹𝐹𝑀𝑀𝑖𝑖+1 < −0.9), then remove the point 

 
Figure 2.16 shows the output of the fine-tuned spike removal. 
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Figure 2.16 Profile with removed data points highlighted in red (top) and profile after 

spiked flatline removal has been applied (bottom). 
 

The seventh step removes limited cases where a single spike occurs in the middle 
of two flatlines. These spikes are not removed at stage two or four, but these 
instances were determined to be spikes as they occurred in the middle of two 
flatlines. The implementation is as follows: 
 
• If 𝑝𝑝𝑖𝑖 = NULL, then skip this value 
• If (𝑝𝑝𝑖𝑖 ≠ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁) AND (𝑝𝑝𝑖𝑖+1 = NULL) AND (𝑝𝑝𝑖𝑖−1 = NULL), then remove 

the point 
 
At this stage, it is hard to visualize the noisy data points being removed since 
they are single isolated points along the profile; therefore, Figure 2.17 shows a 
zoomed-in plot of the left side of the profile where the output of the mid-flatline 
spike removal can be observed. 
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Figure 2.17 Profile with removed data points highlighted in red (top) and profile after 

mid- flatline spike removal has been applied (bottom). 
 

The eighth and final step deals with the rare occasion where the endpoints of the 
profile are part of a flatline. While they do get removed at stage one, this action 
complicates the imputation and detrending methods later because it is hard to 
impute data that occurs at the endpoints. This stage does a “pre-imputation” to 
deal with the problem of missing data at the endpoints. To do so, the algorithm 
verifies whether the endpoints and the points adjacent to the endpoints have been 
removed at previous stages. If the endpoints have been removed, then SOFA 
imputes the first or last point with the median value of the profile height. This 
type of imputation is known as mean/median imputation. Typically, researchers 
abstain from using this imputation method for multiple instances of missing data 
because it tends to underestimate the variance, but the approach is safe to use if 
only a few points are being imputed. In this case “few” refers to one or two data 
points out of 622. Figure 2.18 shows the output of endpoint pre-imputation. 
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Figure 2.18 Profile with pre-imputed point highlighted in red (top) and profile after end 

point pre-imputation has been applied (bottom). 
 

2.3.2.3 Data Imputation 
Data imputation is the process of replacing missing data with substituted values. 
There is some criticism of imputing data on the grounds that imputation is 
essentially coming up with artificial data to fill in any gaps; often researchers 
might discourage the use of artificial data in favor of using only real data. 
Depending on the specific application, this kind of criticism is unfounded for a 
couple of reasons. First, the idea of imputation is not a tool used to generate valid 
estimates of specific case values but rather a tool for calculating relationships 
between variables. Whether the estimates for individual case values are correct 
is irrelevant if the correlations and other statistical associations are right. Second, 
it has been proven to be consistent and produce better results than simply using 
whatever data is complete and deleting those cases that are not complete. In fact, 
the latter practice could even lead to biased results (Rubin, 1976; Sabillon-
Orellana, 2020). 

 

2.3.2.3.1 Missing Data 
Missing data problems can be classified into three main categories: missing 
completely at random (MCAR), missing at random (MAR), and missing not at 
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random (MNAR). The theory of missing data that governs these probabilities is 
called the missing data mechanism or response mechanism. If the reason for 
missing data points is random, meaning that the pattern of missing values is 
uncorrelated with the structure of the data, then the data are said to be missing 
completely at random (MCAR). This effectively implies that the causes for data 
being missing are unrelated to the data (Rubin, 1976; Kang, 2013). An example 
of MCAR is a weighing scale that ran out of batteries. Some of the data are 
missing simply because of bad luck. 
 
If the probability of being missing is the same only within groups defined by the 
observed data, then the data are missing at random (MAR). MAR is a much 
broader class than MCAR (Rubin, 1976; Kang, 2013). For example, when placed 
on a soft surface, a weighing scale may produce more missing values than when 
placed on a hard surface. Such data are thus not MCAR. If, however, we know 
the surface type and if we can assume MCAR within the type of surface, then 
the data are MAR. 
 
Lastly, the data is said to be missing not at random (MNAR) if neither MCAR 
nor MAR hold. MNAR means that the probability of missingness varies for 
unknown reasons, but the propensity of being missing depends on the observed 
data, not the missing data. For instance, if a survey is conducted on college 
students asking for their current GPA, students with a low GPA might decide 
not to answer because their GPA is low. In this case, the value of the data is the 
reason why it is missing, but one can never know if that is indeed the correct 
reason for its missingness. MNAR is the most complex case. Strategies to handle 
MNAR are to find more data about the causes for the missingness, or to perform 
what-if analyses to see how sensitive the results are under various scenarios 
(Rubin, 1976; Kang, 2013). 
 
Most modern imputation techniques start with the MAR assumption. While 
MCAR is desirable, in practice, it is unrealistic. Thus, one must assume that 
missing values can be replaced by predictions derived by the observable portion 
of the dataset. This is a fundamental assumption to make; otherwise, it would be 
impossible to predict plausible values of missing data points from the observed 
data (Rubin, 1976; Kang, 2013). 

 

2.3.2.3.2 Imputation in Pavement Texture Data Processing 
The field of data imputation within statistics has made tremendous progress over 
the years across multiple fields of science. However, there is little to no 
documentation that specifies which techniques are the most ideal when 
attempting to impute a cross-sectional profile of pavement texture. Standards for 
processing texture data, like ISO 13473, recommend the use of linear 
interpolation or multiple imputation to deal with the missing data, but no testing 
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has been done on whether these imputation methods are still valid when long 
gaps of missing data are present within the profile. Some research studies have 
even decided not to impute data and do their analysis with incomplete datasets. 
 
In this project, the research team designed a thorough and meticulous experiment 
aimed at bridging this gap in the literature. The research team studied the process 
of data imputation to determine the best imputation method based on their 
accuracy and computation time. The case study explored ten popular imputation 
methods, explained how they work, tested each by means of Monte Carlo 
simulation, and ranked their efficiency using the analytic hierarchical process. 
A two-tailed hypothesis test was used to make the final decision and determine 
whether the gain in imputation accuracy (if any) was statistically significant 
compared to the same statistic computed with missing data. 
 

2.3.2.3.3 Imputation Experimental Design 
A pavement profile with no significant noise was manually selected from the 
field data and detrended to test all the imputation methods (Figure 2.19). Monte 
Carlo simulation was then used by means of a noise-generating function to create 
missing data within the profile. The objective of the noise-generating function 
was to simulate the effect of the noise detection and removal algorithm on the 
signal. The process aimed at identifying noise and removing those points from 
the profile. 
 

 
Figure 2.19 Original profile after detrending to be subjected to Monte Carlo simulation 

 

Noise can be generated as a single point, multiple single points, a string of points 
(gap of size n), or multiple strings of points. Figure 2.20 shows examples of how 
the noise-generating function removes these points. All points in the profile have 
a uniform probability of being removed by the algorithm and the location of the 
missing data along the profile changes at every iteration. However, the amount 
of noise within the profile was set not to exceed 10% of the total number of data 
points. This threshold was established based on ISO standard 13473.  
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Figure 2.20 Profile after noise was removed: 62 single points (top), a gap of size 

50 (middle) and 6 gaps of size 10 (bottom) 
 

The protocol used to simulate missing data creates the following scenarios: 
 
• Scenario 1: the protocol removes 62 single points (10% of the data) from 

the profile to simulate the worst-case scenario for maximum number of 
single data points missing. In this case the gap size is one. 

• Scenario 2: the protocol removes a single gap of length 𝑛𝑛, from 𝑛𝑛 = 2 to 𝑛𝑛 
= 62. 

 
Each imputation method was implemented after the noise was generated and its 
output was compared to the original profile. This process was performed 5,000 
times to ensure that every possible scenario of noise was captured while not 
exceeding 10% of the total number of data points. For these data, the texture 
profile had a total of 622 data points; therefore, the maximum allowable number 
of missing data were 62 points. Recall that if a profile has more than 10% noise, 
the profile was discarded. 
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To determine which imputation method is the best when processing pavement 
texture data, three tests were conducted. First, the accuracy of the imputation 
method was tested in terms of how well the imputed data replicated the true 
shape of the original pavement profile. This accuracy was quantified using the 
sum of square errors (SSE). Since there are 5,000 iterations for every gap size, 
the mean and standard deviation of the 5,000 SSE values for every gap size were 
recorded. Second, the average computation time necessary to impute a profile 
over 5,000 different scenarios was also recorded. This is an important metric 
given that, during field data collection, the number of profiles to be processed 
can easily exceed 10,000. Hence, algorithms that are quick at imputing data are 
preferable. The last test was probably the most important. This test aimed at 
quantifying whether it was worth running an imputation algorithm or better to 
work with profiles with missing data. This was tested by computing a statistic 
using the original true profile, setting that as the ground truth. Then, the same 
statistic was computed once the profile had missing data, i.e., after the noise had 
been generated and removed, and after the profile had been imputed. 
 
If the statistic computed with the imputed data is closer to the ground truth than 
the statistic computed with missing data, then the imputation method is efficient. 
To achieve this, the percent error for the missing and imputed were computed. 
Then, if an improvement in the accuracy of the statistic was observed, a two-tail 
t-test was performed on the percent errors to determine whether they were 
statistically different from one another. For this experiment, two statistics were 
considered: the fourth sample standardized moment (𝑀𝑀4), i.e., the kurtosis; and 
the MPD of the profile. 𝑀𝑀4 was chosen because of its high sensitivity to changes 
in the elevation values of the profile, particularly those that are the largest in 
magnitude. The MPD was chosen because it is the most commonly used metric 
by transportation agencies to quantify pavement texture. Finally, the analytic 
hierarchical process was used to make an objective decision of which imputation 
algorithm was the best, given all the tests above. 
 
This study provided valuable information, as it proved that data imputation for 
texture data processing significantly increased the accuracy of estimates of 
texture statistics when the right imputation method was implemented. This study 
found that linear interpolation imputation was the best imputation technique, not 
only because of its robustness and efficiency but also because of its simplicity 
and ease of implementation. However, it was also proven that using poor 
imputation techniques—such as spline interpolation for gaps of missing data that 
are greater than ten data points—can potentially yield biased estimation of 
pavement texture statistics that are significantly worse than simply computing 
those statistics using the data with missing entries. Table 2.3 provides a 
summary of the ranking for the ten imputation methods tested in this case study; 
the higher the value in the “Overall Relative Weight” column, the more desirable 
that implementation is. 
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Table 2.3 Ranking of imputation methods based on the analytic hierarchical 

process 

Rank Method Overall Relative Weight 

1. Linear Interpolation 0.138 

2. Seasonally Decomposed Missing Value 0.136 

3. Simple Moving Average 0.112 

4. Exponential Moving Average 0.112 

5. Autoregressive Integrated Moving Average 0.099 

6. Stineman Interpolation 0.092 

7. Stochastic Regression 0.091 

8. Mean Imputation 0.086 

9. Deterministic Regression 0.086 

10. Spline Interpolation 0.048 

 
 

2.3.2.3.4 Linear Interpolation Imputation 
This method is by far the most popular imputation method for pavement texture 
data, and it is usually the one recommended by pavement profile processing 
standards (ISO, 2008). Linear interpolation is an imputation technique that 
assumes a linear relationship between data points and utilizes the available 
values from adjacent data points to compute a value for the missing cases. An 
implementation of linear interpolation imputation is shown in Figure 2.21. In 
Figure 2.21, the black points represent the original data, while the grey points 
are the data the was intentionally removed and represent missing data. The 
orange lines represent the linear interpolation that is used to replace the missing 
readings. 
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Figure 2.21 Linear interpolation method 

Additionally, Figure 2.22 presents the profile that was shown in the noise 
detection and removal subsection after linear interpolation was applied. The red 
lines represent the portion of data that was removed as noise and then imputed 
by means of linear interpolation. 

Figure 2.22 Linear interpolation method applied onto denoised texture profile 

2.3.2.4 Profile Detrending 
After processing the profiles for noise and imputing all missing data points, 
further detrending was performed such that all pavement profiles were centered 
around a flat horizontal plane at the origin. This is also a required step if one seeks 
to transform the data from the spatial domain to the spectral domain. During this 
project and to be consistent with the MPD standard, the middle 100 m of the 
signal were selected to also correspond to the GripTester wheel path. There are 
two ways to remove a linear or polynomial trend within time series data: 
integration and regression detrending. This section addresses only regression 
detrending, given that this is the method used on the denoised profiles. 
Regression detrending involves using linear or polynomial regression and 
subtracting the regression line from the data to achieve an approximately 
stationary time series, as shown in Equations 2.1 and 2.2. 

where 𝑦𝑦�(𝑡𝑡) is the regression line that fits the profile, 𝛽𝛽𝑖𝑖 are regression 
coefficients, 𝑥𝑥 is the transverse coordinate, 𝑧𝑧(𝑡𝑡) is the detrended profile, and 
𝑦𝑦(𝑡𝑡) is the original profile. Figure 2.23 shows a time series with a linearly 
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increasing trend. In the middle of the figure, the best-fit line is estimated 
using linear regression and highlighted in red. The regression line is then 
subtracted from the data and the result is an approximately stationary time 
series. The resulting time series after using regression detrending is still not 
fully stationary because there is still seasonality within the cross-sectional 
profile. Seasonality is a characteristic of a time series in which the data 
experiences regular and predictable changes that recur after a given time period 
or, in this case, distance. The seasonality within a pavement profile is due to 
the aggregate gradation of the mix and that seasonality must not be removed 
as it is a characteristic of pavement texture. 

Figure 2.23 Data with linear trend removed by means of regression detrending 

Figure 2.24 shows a comparison between the raw texture profile collected by 
the prototype and the finalized processed profile after regression detrending has 
been applied. 
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Figure 2.24 Comparison between (top) and (bottom) the processed profile after 

denoising, imputation, and detrending 
 

2.3.2.5 Data Transformation 
The last step of the data processing involves transforming the data from the 
spatial domain to the frequency domain. This step is only required if one seeks 
to characterize the pavement profile using metrics such as the PSD, or one seeks 
to isolate a particular component of the texture spectrum such as the 
macrotexture of the profile by using band-pass filters. The research team decided 
to use the Discrete Fourier Transform (DFT) as previous research studies have 
shown promising results when correlating texture with friction. 
 
Before transforming the texture data to the spectral domain, the profile is 
subjected to a windowing algorithm (Figure 2.25) to reduce the amplitude of the 
signal to zero at the edges of the profile and avoid leakage. Spectral leakage 
occurs when a signal is transformed into the spectral domain, but with the wrong 
frequencies being amplified. This occurs because the Fourier transformation 
assumes that the period of the signal being sampled is representative of the 
original signal. This means that, if one were to infinitely reproduce the sampled 
signal to the left and right, the original signal should be recreated. However, on 
some occasions, the signal may not have a smooth transition at the endpoints, 
and hence if the signal is reproduced sharp edges develop at the junctions. These 
sharp edges are the ones responsible for amplifying the wrong frequencies when 
the signal is transformed to the frequency domain. Spectral leakage can be 
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minimized by increasing the window size of the sampling period: the longer the 
signal is sampled, the less impactful the errors associated to leakage. In 
pavement profiles, this sampling period refers to the length of the scan. As the 
length of the scan increases, the bandwidth of the spectrum of the window 
becomes narrower and hence the effects of spectral leakage are minimized. 
However, given that the length of the measured profile is less than one meter, a 
Split Cosine Bell Window (SCBW) was applied as per Equation 2.3. 

 

 
Figure 2.25 Response on the SCBW 

 
 

 
 

where 𝑤𝑤𝑖𝑖,𝐶𝐶 is the window coefficient, 𝑁𝑁 is the number of data points, and 𝑖𝑖 is the 
sample number. The window coefficient was multiplied by the signal and later 
normalized by the integral of the window to prevent attenuation of the signal as 
per Equation 2.4. 
 

 
 

where 𝑍𝑍𝑖𝑖,𝑤𝑤𝑖𝑖𝑤𝑤 is the windowed profile height at point 𝑖𝑖 (mm). A detrended profile 
can be seen before and after being subjected to the SCBW in Figure 2.26. Notice 
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that only 100 mm of the profile are subjected to SCBW and detrended to be 
consistent with the MPD standard. 

 

 
Figure 2.26 Detrended profile (top) and same profile after being subjected to the SCBW 

(bottom) 
 

DFT is applied to the windowed profile as defined by Equation 2.5 to transform 
the texture data from the spatial time domain into the spatial frequency domain. 
 

 
 
where 𝑍𝑍𝑘𝑘 is the DFT of the windowed profile, and 𝑗𝑗 stands for the imaginary unit 
( 𝑗𝑗2 =  −1). The result of the DFT is a constant bandwidth narrow band 
spectrum with complex values. The bandwidth is a function of the evaluation 
length defined by Equation 2.6. 
 

 
 
where ∆𝑓𝑓𝑠𝑠𝑝𝑝 is the frequency interval (cycle/meter) and 𝑙𝑙 is the evaluation length 
(m). An important property of DFT is that it obeys the Shannon Sampling 
Theorem, which states that the sampling frequency should be at least twice the 
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highest frequency contained in the original signal. An alternate way to interpret 
this statement is that the shortest wavelength that can be obtained from a discrete 
signal is twice the sample spacing. The sensor used on the prototype is capable 
of sampling two points with a spacing of 0.161 mm in the transverse direction. 
Thus, the shortest wavelength that can be analyzed using the DFT is 0.322 mm. 
This implies that the DFT can capture all the wavelengths at the macrotexture 
level and a few wavelengths within the first decade of microtexture. 
 
The results of the DFT are later converted into a PSD by means of Equation 2.7. 
The PSD is then plotted on a log-log scale against the wavelength. Figure 2.27 
shows a sample PSD plot using the center 100 mm for consistency. 
 

 
 
where 𝑍𝑍𝑃𝑃𝑃𝑃𝑃𝑃 is the PSD. 

 

 
Figure 2.27 PSD plot with breaks for texture components 

 

2.4 Feature Engineering 
This section addresses how texture statistics were computed and explains 
subsequent processing on the statistics before using them in the skid prediction 
models. 

 

2.4.1 Texture statistics 
As mentioned in Section 1.1.2, summary statistics used to characterize texture 
can be broken down into two main categories: spatial and spectral. Spatial 
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texture statistics are divided into four groups: amplitude, spacing, hybrid, and 
functional parameters. 

 

2.4.1.1 Spatial Amplitude Statistics 
Amplitude statistics are the most important metrics to characterize the pavement 
surface topography. They are used to measure the vertical characteristics of the 
surface deviations. The amplitude statistics used in this study are briefly 
described in this section and their equations are shown in Table 2.4 
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Table 2.4 Summary of spatial amplitude statistics 

Statistic Equation 

Maximum Height  
(Rz)  

Absolute Height Average 
 (Ra)  

Height Variance  
(Rv)  

Root Mean Square  
(RMS)  

Skewness  
(Rs) 

 

Kurtosis  
(Rk)  

Ten Point Mean 
Roughness (Rt) 

 

Mean Profile Depth 
(MPD)  

Solidity Factor 
(Rr)  

 
where ℎ𝑖𝑖 is the elevation at point 𝑖𝑖, ℎ� is the mean elevation, 𝑛𝑛 is the number of 
datapoints, ℎ𝑝𝑝𝑝𝑝 is the 𝑗𝑗𝑡𝑡ℎ highest peak in the profile, ℎ𝑣𝑣𝑝𝑝 is the 𝑗𝑗𝑡𝑡ℎ lowest valley 
in the profile, ℎ𝑚𝑚/2 is the elevation value midway through segment, and ℎ𝑚𝑚 is 
the elevation value at the end of segment 

2.4.1.1.1 Maximum Height (𝑅𝑅𝑧𝑧) 
The maximum height of the profile indicates the absolute vertical distance 
between the maximum profile peak height and the maximum profile valley depth 
along the sampling length. When dealing with roughness profile, 𝑅𝑅𝑧𝑧 is commonly 
referred to as the maximum roughness. Figure 2.28 depicts the 𝑅𝑅𝑧𝑧 statistic in 
texture profile. Figure 2.29 shows a comparison between a profile with a high 
𝑅𝑅𝑧𝑧 a low 𝑅𝑅𝑧𝑧. 
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Figure 2.28 Sample profile (top), visualization of the computation of 𝑅𝑅𝑧𝑧 (bottom) 

 

 
Figure 2.29 Profile with high 𝑅𝑅𝑧𝑧 (blue) and one with low 𝑅𝑅𝑧𝑧 (black) 

2.4.1.1.2 Absolute Height Average (𝑅𝑅𝑎𝑎) 
The absolute height average of the profile is a substitute for the first moment or 
mean height of the average profile. All profiles have been detrended which 
implies the mean elevation of the pavement profile is centered around zero. 
Thus, computing the mean height becomes trivial. Instead, this statistic 
quantifies the average height for the absolute value of elevations along the 
sampling length. Figure 2.30 shows the 𝑅𝑅𝑎𝑎 statistic in texture profile. Figure 
2.31 shows a comparison between a profile with a high 𝑅𝑅𝑎𝑎 and a low 𝑅𝑅𝑎𝑎. 
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Figure 2.30 Sample profile (top), absolute value elevation (middle) and 𝑅𝑅𝑎𝑎 (bottom) 

 

 
Figure 2.31 Profile with high 𝑅𝑅𝑎𝑎 (blue) and one with low 𝑅𝑅𝑎𝑎 (black) 

 

2.4.1.1.3 Height Variance (𝑅𝑅𝑣𝑣) 
The height variance quantifies how the distribution of heights is spread along 
the profile. Low values of 𝑅𝑅𝑣𝑣 indicate the presence of pavements that are 
predominantly fine mixes or low macrotexture; whereas high values are 
generally indicators of coarser mixes or chip seals, or other mixes that have high 
macrotexture. Moreover, spikes in this statistic could also indicate the presence 
of joints, open pores, or cracking on the road as all these phenomena drastically 
increase the range of heights in the profile. Figure 2.32 shows a comparison 
between a profile with a high 𝑅𝑅𝑣𝑣 and a low 𝑅𝑅𝑣𝑣. 
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Figure 2.32 Profile with high 𝑅𝑅𝑣𝑣 (blue) and one with low 𝑅𝑅𝑣𝑣 (black) 

 

2.4.1.1.4 Root Mean Square (RMS)) 
The RMS is the standard deviation of the elevation within the profile. It measures 
how much the measured profile deviates on average from the horizontal flat 
plane. One of its main applications is to provide a more accurate measurement 
of the surface roughness. It is also typically used in conjunction with the MPD 
to identify whether the surface has a negative or positive texture. For example, 
in Figure 2.33, both profiles have an identical variation, hence they have the 
same RMS. But one can determine whether if the texture is negative or positive 
based on the MPD. The profile with the larger MPD will have a positive texture. 
RMS captures the same elevation characteristics of the profile that the variance 
captures. 

 
Figure 2.33 : Positive and negative texture (McGhee and Flintsch, 2003) 

 

2.4.1.1.5 Height Skewness (𝑅𝑅𝑠𝑠) 
The skewness is a measure of the size of the two tails of the distribution. For 
pavement texture profiles, it determines the degree of asymmetry of the profile 
about the horizontal plane. A positive value for 𝑅𝑅𝑠𝑠 indicates the predominance 
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of peaks along the profile; negative values indicate the predominance of valleys; 
values close to zero indicate a balanced presence of the two. Skewness is a metric 
of interest because when applied to pavement texture profiles, it can help to 
distinguish between positive- and negative-oriented texture based on the sign of 
the statistic (Figure 2.34). Figure 2.35 shows a comparison between a profile 
with a positive, neutral, and negative 𝑅𝑅𝑠𝑠. 

 

 
Figure 2.34 : Idealized profiles showing the difference between (top) negative texture 

and positive texture (bottom) based on their skewness (Gadelmawla et al. 2002) 
 

 
Figure 2.35 : Profiles with positive 𝑅𝑅𝑠𝑠 (yellow), neutral 𝑅𝑅𝑠𝑠 (blue), and negative 𝑅𝑅𝑠𝑠 (black) 

 

2.4.1.1.6 Height Kurtosis (𝑅𝑅𝑘𝑘) 
Kurtosis is a measure of the combined size of the tails relative to whole 
distribution. When 𝑅𝑅𝑘𝑘 is positive, it indicates the presence of extremely high 
peaks or deep valleys. When it is negative, it indicates a lack of extreme peaks 
or values. Lastly, if the value of kurtosis is close to zero, it means that the 
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distribution of height is about normal, with very few high peaks or deep valleys. 
Figure 2.36 shows a comparison between a profile with a positive, neutral, and 
negative 𝑅𝑅𝑘𝑘. 

 

 
Figure 2.36 Profiles with positive 𝑅𝑅𝑘𝑘 (yellow), neutral 𝑅𝑅𝑘𝑘 (blue), and negative 𝑅𝑅𝑘𝑘 (black) 

2.4.1.1.7 Ten Point Mean Roughness (𝑅𝑅𝑡𝑡) 
The 𝑅𝑅𝑡𝑡 is the difference between the highest peak and the lowest valley, the 
difference between the second highest peak and the second lowest valley, and so 
on, until the five most extreme differences in data points within the profile have 
been acquired and averaged. Figure 2.37 shows a comparison between a profile 
with a high 𝑅𝑅𝑡𝑡 and a low 𝑅𝑅𝑡𝑡. 

 

 
Figure 2.37 Profile with high 𝑅𝑅𝑡𝑡 (blue) and one with low 𝑅𝑅𝑡𝑡 (black) 

2.4.1.1.8 Solidity Factor (𝑅𝑅𝑟𝑟) 

The solidity factor is the ratio between the maximum depth of valleys and the 
maximum height of the profile. This statistic is one of the simplest to compute 
and yet it appears to have a strong predictive power for distinguishing between 
different pavement surfaces. An image for Rr is not shown as visually, it captures 
properties similar to the ten-point mean roughness. Profiles with a negative 𝑅𝑅𝑟𝑟 



66 
 

and high in magnitude are similar to those with a low 𝑅𝑅𝑡𝑡, whereas profiles with 
negative 𝑅𝑅𝑟𝑟 and small in magnitude look similar to profiles with a high 𝑅𝑅𝑡𝑡.  

2.4.1.1.9 Mean Profile Depth (MPD) 
MPD is purely a geometric indicator that relies on the ratio between the surface 
area and the length and usually refers to the macrotexture domain. The MPD is 
estimated by diving the texture profile into segments of 100 mm in length. The 
profile needs to be fully detrended to provide a zero-mean profile segment. The 
segment is then subdivided into two halves, and the height of the highest peak 
within each half is determined. The average of these two peaks is referred to as 
the mean segment depth, as shown in Figure 2.37. The average value of the 
mean segment depth of all the measured profiles is the MPD (ASTM E 1845, 
2009). Figure 2.38 shows the MPD statistic in texture profile. Figure 2.39 
shows a comparison between a profile with a high MPD and a low MPD. 

 

 
Figure 2.38 : Sample profile divided into two 50mm segments (top), finding the peaks of 

each segment (middle), computation of the MPD (bottom). 
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Figure 2.39 : Profile with high 𝑀𝑀𝑀𝑀𝑀𝑀 (blue) and one with low 𝑀𝑀𝑀𝑀𝑀𝑀 (black) 

 
 

2.4.1.2 Spatial Spacing Statistics 
Spacing parameters are those that measure the horizontal characteristics of the 
surface deviations. The spacing parameters are very important in fields like 
manufacturing, such as when pressing sheet steel. In this case, evaluating the 
spacing parameters is necessary to obtain consistent lubrication when pressing 
the sheets to avoid scoring and to prevent the appearance of surface texture on 
the final product (Gadelmawla et al, 2002). The spacing statistics used in this 
project are briefly described in this section and their equations are shown in 
Table 2.5. The equations in Table 2.5 are similar to those in Table 2.4, the only 
difference is that instead of using elevations (ℎ𝑖𝑖), these equations use horizontal 
spacing (𝑥𝑥𝑖𝑖) is measured in mm. 

 
Table 2.5 Summary of spacing summary statistics 

Statistic Equation 

Mean Cross Width 
(𝐶𝐶𝑚𝑚)  

Cross Width Variance 
(𝐶𝐶𝑣𝑣)  

Cross Width Skewness 
(𝐶𝐶𝑠𝑠) 
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2.4.1.2.1 Cross Width 
The cross width measures the horizontal distance between points inflection 
points along the profile. That is, the distance between two consecutive points 
that cross the zero elevation line. Unlike some of the amplitude statistics, this 
spacing parameter is always strictly positive. Thus, the research team computed 
its mean (𝐶𝐶𝑚𝑚), variance (𝐶𝐶𝑣𝑣), and skewness (𝐶𝐶𝑠𝑠) to characterize the distribution 
of spacing across the profile. Figure 2.40 shows a comparison between a profile 
with a high 𝐶𝐶𝑚𝑚 and a low 𝐶𝐶𝑚𝑚. The other two spacing statistics are not presented 
as they capture similar spacing characteristics to those of 𝐶𝐶𝑚𝑚. It should also be 
noted that it is impossible to compute the kurtosis of spacing for all the profiles, 
given that some profiles cross the baseline only twice, meaning there are not 
enough data points to compute the correction factor in the kurtosis equation. The 
kurtosis equation requires at least four data points. 

 

 
Figure 2.40 : Profile with high 𝐶𝐶𝑚𝑚 (blue) and one with low 𝐶𝐶𝑚𝑚 (black) 

 

2.4.1.3 Spatial Hybrid Statistics 
The hybrid statistics are a combination of amplitude and spacing. Any changes 
that occur in either amplitude or spacing may have effects on the hybrid 
properties. In tribology analysis, surface slope, surface curvature, and developed 
interfacial area are important factors, which influence the tribological properties 
of surfaces. The tribology refers to all of the characteristics relating to interacting 
surfaces in relative motion, including friction, wear, and lubrication 
(Gadelmawla et al. 2002). The hybrid statistics used in this study are briefly 
described in this section and their equations are shown in Table 2.6. 
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Table 2.6 Summary of hybrid summary statistics 

Statistic Equation 

Two-Point Slope 
Variance (𝑆𝑆𝑆𝑆2) 

 

Six-Point Slope 
Variance (𝑆𝑆𝑆𝑆6)  

 

where Δ𝑥𝑥 is the pacing between two adjacent points. 

2.4.1.3.1 Two-Point Slope Variance (𝑆𝑆𝑆𝑆2) 

The two-point slope variance (SV2) measures the slopes between two 
consecutive points as the difference in height between two consecutive 
coordinates, divided by the horizontal distance between them. Figure 2.41 
shows a comparison between a profile with a high SV2 and a low SV2. 
 

 
Figure 2.41 : Comparison between a profile with high 𝑆𝑆𝑆𝑆2 (blue) and one with low 𝑆𝑆𝑆𝑆2 

(black) 

2.4.1.3.2 Six-Point Slope Variance (SV6) 
The second parameter, SV6, calculates the slopes using a weighted sum of the 
height values of six coordinates divided by the horizontal distance between 
them. At this scale, a high SV6 is indicative of aggregate angularity, which can 
be related to high macro and microtexture. Figure 2.42 shows a comparison 
between a profile with a high SV6 and a low SV6. 
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Figure 2.42 Comparison between a profile with high 𝑆𝑆𝑆𝑆6 (blue) and one with low 𝑆𝑆𝑆𝑆6 

(black) 
 

2.4.1.4 Spectral Statistics 
Spectral parameters are calculated in the frequency domain and considered to be 
scale independent, given that they are estimated along a wide range of texture 
wavelengths covering multiple texture components (Serigos et al., 2016). 
Obtaining spectral parameters requires the use of Fourier analysis to examine 
the surface texture profile. In this project, two spectral statistics were used to 
characterize the PSD of the pavement profiles. 

2.4.1.4.1 Power Spectral Density (PSD) 
The PSD is a description of how the energy of a pavement texture profile is 
distributed over the different frequencies. The PSD of a roadway is obtained by 
applying a DFT to the linear profile of a pavement surface to decompose it into 
a series of sinusoidal functions with discrete frequencies. Because so many 
sinusoids must be added together to build complex road profiles, individual 
amplitudes are almost always small. Hence, the Fourier Transform is adjusted to 
show how the variance of the profiles is distributed over a set of sinusoids. This 
adjustment is known as the PSD (Sayers and Karamihas, 1998). Serigos et al. 
(2016) used the slope and intercept of the linearized PSD curve to characterize 
the surface macro and microtexture. The method of least squares is used to 
compute the regression line that best fits the PSD curve and extract its slope and 
intercept. Furthermore, the logarithm is computed given that the values can be 
orders of magnitude different from one another. By taking the logarithm, the 
scale of this statistic becomes significantly smaller. Figures 2.43 and 2.44 show 
a comparison between two profiles with different values for PSD intercept 
(𝑀𝑀𝑆𝑆𝑀𝑀𝑖𝑖) and the logarithm of PSD slope (𝑝𝑝𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠), respectively. The top row 
shows the profiles in mm, and the bottom row shows their PSD in the logarithm 
scale. 
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Figure 2.43 : Profiles with high 𝑀𝑀𝑆𝑆𝑀𝑀𝑖𝑖 (blue) and one with low 𝑀𝑀𝑆𝑆𝑀𝑀𝑖𝑖 (black). 

 

 
Figure 2.44 Profiles with high 𝑝𝑝𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠 (blue) and one with low 𝑝𝑝𝑀𝑀𝑆𝑆𝑀𝑀𝑠𝑠 (black) 

 

2.4.2 Filtering High Noise Profiles 
The noise removal and imputation processes mentioned in Sections 2.3.2.2 and 
2.3.2.3 are essential to remove any spikes that would bias the results. 
Nonetheless, some of the profiles presented too much noise and most of the data 
were removed before it got imputed to the extent that the level of uncertainty in 
the data was too high. In fact, statisticians who study the effects of imputation in 
different fields of science recommend that when a single variable has more than 
60% missing data, this variable should be discarded (Jacobsen et al., 2017; Dong 
and Peng, 2013; Lee and Huber, 2011). In this case, that would be equivalent to 
the amount of data that was removed because it was deemed as noise by the 
SOFA. Thus, it is important to set a threshold of how much noise and imputation 
is considered allowable. 
 
In the context of pavement profiles, some standards state the amount of noise to 
be tolerated should be 10% or at most 20% (ISO 13473, 2008; ASTM E2157, 
2015; ASTM E1845, 2008; ISO 4287,1997). These thresholds are usually used 
for profiles that are collected using stationary equipment like the LLS or CTM, 
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which is expected to have a high level of precision and little to no interference 
from the environment, such as light saturation or mechanical vibrations. 
However, the prototype developed for this project collects continuous data at 
highway speeds. This implies that the sensor is subjected to vehicle vibrations 
(induced by the engine and pavement roughness), inconsistent lighting, 
pavement reflectivity, debris, and distresses on the road. For all these reasons, 
the threshold at which a profile is considered invalid was increased to 33%. Any 
profile with a percentage of noise higher than the threshold was discarded. The 
33% threshold corresponds to more than 205 data points out of 622. Notice that 
this threshold is particularly high when compared to all other standards, but for 
the time being scanning chip seals with high macrotexture or dark slurry seals 
can yield high noise levels, where using 10% or even 20% would remove all the 
data on these pavement surfaces. 
 

2.4.3 Profile Averaging 
Once the filtered profiles and their statistics were computed. The next task 
consists of collapsing groups of 25 consecutive profiles by computing the 
average of their statistics. This is because the friction data was collected every 
meter, whereas the texture data was taken every 0.04 meters (25 profiles per 
meter). This allows the research team to have a one-to-one relationship between 
the friction and texture statistics. Alternatively, the 25 consecutive profiles could 
be combined to obtain a 3D surface and compute 3D texture statistics, however, 
3D statistics are mostly experimental and are not so popular in practice. 

 

2.4.4 Statistic Normalization 
Several machine learning algorithms could be applied find trends in the data by 
analyzing the sample space and comparing every observation in the dataset. An 
issue arises when the features have different scales. Variables that are measured 
at different scales do not contribute equally to the model fitting and might end 
up creating a bias, especially those that are orders of magnitude bigger than the 
rest. Thus, feature-wise scale reduction techniques are used prior to model fitting 
to deal with this problem. 
 
Min-max normalization is one of the most common ways to normalize data. For 
every feature, the minimum value of that feature gets transformed into a zero, 
the maximum value gets transformed into a one, and every other value gets 
transformed into a decimal between zero and one using the transformation in 
Equation 2.8. 
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where Ui is the standard uniform random variable, x is the value of the statistic, 
x1 is the minimum in the statistic’s distribution, and xn is the maximum in the 
statistic’s distribution. Nonetheless, min-max normalization has one significant 
disadvantage: it does not handle outliers very well. If the data happens to have 
numerous outliers, then a different normalization technique must be used. Z-
score normalization is a strategy for normalizing data that avoids the issues 
caused by outliers. The formula for Z-score normalization is provided in 
Equation 2.9. 
 

 
 
where Zi is the standard normal score, sn is the sample standard deviation, and x̄ 
is the sample mean. If a value is exactly equal to the mean of all the values of 
the feature, it is normalized to zero. If it is below the mean, it will be a negative 
number; if it is above the mean, it will be a positive number. The size of those 
negative and positive numbers is determined by the standard deviation of the 
original feature. If the unnormalized data had a small standard deviation, the 
normalized values will be closer to zero. 
 
The sets of statistics used in this project have very different scales. The top of 
Figure 2.45 illustrates the dissimilarities in the scales of four statistics used in 
this analysis. As can be seen, some of this statistic have multiple outliers; thus, 
it was deemed appropriate to normalize the scales by using Z-score 
normalization. Once done, all statistics were transformed into standard normal 
variables with similar scales, as shown in the bottom of Figure 2.45. 

 

 
Figure 2.45 Boxplot of four unnormalized statistics (top), boxplot of the same statistics 

after being converted to standard normal variables (bottom). 
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2.5 Pavement Surface Prediction 
Previous research has shown that incorporating surface information into a 
regression model to predict skid resistance can drastically improve the predictive 
power of the model from 0.50 to 0.70 in adjusted R2. However, in practice, there 
is a major shortcoming to this approach. Often, the surface information for the 
pavement is not known at a network level. Even at a project level this 
information is still not easy to obtain. For this reason, the research team 
investigated methods of predicting the pavement surface using the collected 
data. 
 

2.5.1 Pavement Surface Picture Collection 
The first step in predicting the surface type of the scanned pavements is 
assembling a comprehensive training set. This set is meant to have the major 
classes of pavement seen in Texas. For this project, this includes dense mixes 
(fine and coarse); open and gap-graded mixes (including SMAs and PFCs); and 
different surface treatments, such as chip seals of different grades, thin overlays, 
slurry seals, and microsurfacings. To achieve this, the research team surveyed 
multiple pavements around the city of Austin and photographed their surfaces, 
taking a close-up and a slightly zoomed-out photo of each surface. Each 
photograph includes a quarter coin for scale. Figure 2.46 shows clear examples 
of some pavement surfaces that were observed and collected for training the 
algorithms. Pictures of each pavement section are shown in Appendix A. 
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Figure 2.46 From top to bottom: PFC, dense coarse mix surface, microsurfacing, and 

chip seal 
 

2.5.2 Expert Opinion 
The research team reached out to experts from TxDOT’s Maintenance Division 
(MNT) and Material and Testing Division (MTD) to have the most educated 
guess of what mix type corresponded with each of the pictures of the surveyed 
sections. Specifically, the research team contacted Dr. Andre Smit and Dr. Feng 
Hong to have them inspect every picture collected from the test sites. From their 
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visual inspection, it was concluded that at least six different pavement sections 
were surveyed: dense coarse mixes, dense fine mixes, open graded mixes, gap-
graded mixes, and different types of chip seals. This information was critical as 
it provided the research team with a better understanding of the data, but most 
importantly, it was used to train and better understand the output of machine 
learning algorithms to predict both the surface type and the pavement friction. 
 

2.5.3 Unsupervised Learning Techniques 
Once the research team had a better understanding of the pavement surfaces that 
were tested, the next step involved using unsupervised machine learning 
techniques to assess if the texture statistics naturally clustered into their 
respective surface types. The techniques used in this analysis were k-means 
clustering and agglomerative hierarchical clustering. A cluster refers to a 
collection of data points aggregated together because of certain similarities. 
These clustering implementations are said to have an unsupervised learning 
phase because the dataset does not contain the true surface type of the pavement. 
In machine learning, this variable would be known as the label. Thus, the 
algorithm analyzes the data in such a way that it finds naturally occurring 
clusters by determining the similarities and differences between the texture 
statistics. These statistics are referred to as features in the machine learning 
context. 
 

2.5.3.1 K-means Clustering 
K-means clustering is one of the simplest and most popular unsupervised 
machine learning algorithms. The algorithm clusters data by trying to separate 
samples into k groups of equal variances by minimizing a criterion known as the 
inertia or the within-cluster sum of squares (Expression 2.10). 
 

 
 
where 𝑥𝑥𝑖𝑖 is the feature vector for the ith observation, 𝜇𝜇𝑝𝑝 is the centroid of cluster 
j, 𝐶𝐶 is the cluster space, and the operator || || is the norm. Inertia is a measure of 
the variability of the observations within each cluster. In general, a cluster that 
has a small inertia is more compact than a cluster that has a large inertia. K is a 
quantity that must be defined by the user before running the algorithm and refers 
to the number of centroids needed to create the clusters. Each cluster is 
characterized by the mean 𝜇𝜇𝑗𝑗 of the samples in the cluster. The means are 
commonly called the cluster “centroids” and they can be the imaginary or real 
locations representing the center of each cluster. 
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The algorithm has three steps. The first step chooses the initial centroids, with 
the most basic method being to choose k samples from the dataset. After 
initialization, the algorithm loops between the two other steps. The second step 
assigns each sample to its nearest centroid. In this step, typically “nearest” means 
the shortest Euclidean distance to the centroid. The third step creates new 
centroids by taking the mean value of all samples assigned to each previous 
centroid. The difference between the old and the new centroids are computed, 
and the algorithm repeats these last two steps until this value is less than a 
threshold. In other words, it repeats until the centroids do not move significantly 
(Choromanska and Monteleoni, 2012). 
 
Given enough time, k-means always converges; however, this may be to a local 
minimum. This is highly dependent on the initialization of the centroids. As a 
result, the computation is often done several times, with different initializations 
of the centroids. One method to help address this issue is the k-means++ 
initialization scheme. This initializes the centroids to be generally distant from 
each other, leading to generally better results than random initialization 
(Choromanska and Monteleoni, 2012). 

2.5.3.1.1 Choosing K: The Elbow Method 
Finding the optimal initialization points for the centroids is one of the two 
challenges when implementing k-means; the other involves determining how 
many clusters should the algorithm find. That is, how do you find the optimal 
“k” for the analysis? 
 
The elbow method is a heuristic but commonly used approach to determine this 
optimal value of k. This method consists of plotting different values for k against 
their corresponding distortion value. In this case the distortion is calculated as 
the average inertia of all clusters. As k increases, the average distortions tend to 
decrease since each cluster has fewer constituent instances, and the instances get 
closer to their respective centroids. However, the improvements in average 
distortion declines as k increases. The value of k at which improvement in 
distortion declines the most is called the elbow. The elbow is the point of 
diminishing returns for the number of clusters in the data. One can see that all 
the distortions proceeding the elbow decrease in an almost linear fashion. Figure 
2.47 shows the elbow plot generated from the field data collected. 
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Figure 2.47 : Elbow method plot to find the optimal k, generated from field texture data 

 

2.5.3.2 Agglomerative Hierarchical Clustering 
Hierarchical clustering is a general family of clustering algorithms that build 
nested clusters by merging or splitting them successively. There are two main 
variations of this clustering technique: the agglomerative and the divisive 
approach. For this project, the agglomerative approach was selected. In the 
agglomerative approach each observation starts in its own cluster, and pairs of 
clusters are merged as one moves up the hierarchy. This hierarchy of clusters is 
represented as a tree (or dendrogram). The root of the tree is the unique cluster 
that gathers all the samples, the leaves being the clusters with only one sample 
(Rokach et al, 2005). Upon visual inspection, one can have an estimate of the 
“optimal” number of naturally occurring clusters in the data, but it is 
recommended to use the elbow method to corroborate this number. Figure 2.48 
shows the dendrogram generated from the field data collected. 

 

 
Figure 2.48 Dendrogram generated from the field texture data 

 
To decide which clusters should be combined, a measure of dissimilarity 
between sets of observations is required. In most methods of hierarchical 
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clustering, this is achieved using an appropriate metric, a measure of distance 
between pairs of observations, and a linkage criterion that specifies the 
dissimilarity of sets as a function of the pairwise distances of observations in the 
sets. The Euclidean distance is generally the most widely used metric to measure 
distances between two points when the number of features in the data is not too 
high. In terms of the linkage criterion, there are multiple options, but the one 
used for this analysis is known as Ward linkage criterion. Ward minimizes the 
sum of squared differences within all clusters. It is a variance-minimizing 
approach and in this sense is like the k-means objective function (Rokach et al., 
2005). 
 
In general, the merges and splits are determined in a greedy manner. This implies 
that the algorithm follows the problem-solving heuristic of making the locally 
optimal choice at each stage. In many problems, a greedy strategy does not 
usually produce an optimal solution, but nonetheless, a greedy heuristic may 
yield locally optimal solutions that approximate a globally optimal solution in a 
reasonable amount of time (Nielsen, 2016). 
 
The main drawback of this approach is its computation time. The time 
complexity of the algorithm is of the order 𝑂𝑂(𝑁𝑁3); that is, the computation of the 
algorithm cubes with the size of the dataset. However, running agglomerative 
hierarchical clustering with a specified metric and linkage criterion is guaranteed 
to converge onto the same unique solution every time (Sibson, 1973). 

 

2.5.4 Supervised Learning Techniques 
The research team assigned labels to the pavement surfaces based on the results 
from the unsupervised learning analysis. As of now, there are six pavement 
surfaces that are easily distinguished by the clustering models: 
 

1. Chip seals with high macrotexture (HM CS) 
2. Dense fine mixes (DFM) 
3. Chip seals with low macrotexture (LM CS) 
4. Open mixes or PFCs (OM) 
5. Dense coarse mixes (DCM), and 
6. Stone matrix asphalt (SMA) 

 
These labels were used to train a supervised learning model to classify different 
pavement surfaces. Supervised machine learning algorithms are designed to 
learn by example. This type of learning is called “supervised” because the model 
is given the correct label for each observation when learning the patterns of the 
data. During its training phase, the algorithm searches for patterns in the data 
that correlate with the desired outputs. After training, a supervised learning 
algorithm can take in new unseen inputs and determine which label to assign the 
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new inputs based on the prior training data. For this project, a decision tree 
classifier was utilized. 
 
Decision trees are a type of non-parametric supervised learning method used for 
classification and regression. This classifier uses a decision tree as a predictive 
model to go from observations about an item, represented by the branches, to 
conclusions about the item’s target value, represented by the leaves. Tree models 
where the target variable can take a discrete set of values are called classification 
trees. In these tree structures, leaves represent class labels and branches represent 
conjunctions of features that lead to those class labels. Decision trees where the 
target variable can take continuous values (typically real numbers) are called 
regression trees. The goal is to create a model that predicts the value of a target 
variable by learning simple decision rules inferred from the data features. 
Decision trees are among the most popular machine learning algorithms, given 
their intelligibility and simplicity (Wu et al, 2007; Piryonesi and El-Diraby, 
2020). Figure 2.49 shows one of the decision trees generated in the preliminary 
stages of this project. 

 

 
Figure 2.49 : Decision tree generated in preliminary development to classify four 

surfaces 
 

2.6 Skid Prediction Modelling 
This section presents the statistical methods used to develop a mathematical 
model to predict pavement skid resistance from a pavement texture profile. 

 

2.6.1 Multiple Regression Analysis 
Regression analysis was used to quantify the relationship between measured 
friction and texture statistics related in a nondeterministic fashion. The most 
straightforward deterministic mathematical relationship between two variables 
X and Y is a linear relationship. This relationship is also known as the simple 
linear regression equation. However, a simple linear regression may not be good 
enough to obtain a consistent and accurate prediction of the dependent variable. 
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This is likely because the variance of the parameter of interest cannot be fully 
explained with a single independent variable, but rather by the combination of 
multiple parameters. Hence, a multiple regression analysis (MRA) was 
proposed. In MRA, the objective is to build a probabilistic model that relates a 
dependent variable to more than one explanatory variable (Devore, 2015). The 
general additive multiple regression model is defined by Equation 2.11: 
 

 
 
where 𝑌𝑌� is the predicted random variable, βk are correlation parameters, xk are 
the explanatory/independent variables and ε is the random deviation term. Linear 
regression models use the coefficient of determination, 𝑅𝑅2, as a comparative 
measure of the correlation between Y and X values. R2 measures how close the 
data are to the fitted regression line or, more precisely, how much of the 
variability of Y can be explained by the variability of X. However, 𝑅𝑅2 is not an 
appropriate statistic to compare multiple regression models because its value 
increases every time an additional predictor variable is added to the model. To 
deal with this problem, the coefficient of multiple determination (R2adj) is used 
instead. The adjusted coefficient quantifies how well the model fits the data but 
punishes the user for each additional parameter added to the model. Thus, this 
statistic is more appropriate to compare models with a different number of 
predictors. 

 

2.6.1.1 Hypothesis Testing 
A two-tailed hypothesis test was used to determine whether the independent 
variables included in the models had a statistically significant influence on skid 
resistance. The confidence level selected was 95%. The null hypothesis, (𝐻𝐻0), 
establishes that the coefficient (𝛽𝛽i) was equal to zero; that is, the corresponding 
independent variable did not have a significant impact on the dependent variable. 
The alternative hypothesis, (𝐻𝐻A), states that the coefficient is different from zero, 
which means that the variable did have a statistically significant influence on the 
dependent variable. The null hypothesis needs to be rejected to be able to 
conclude that the coefficients are different than zero. That means the 
corresponding texture statistics had a statistically significant influence on the 
friction with a confidence level of 95%. 
 

 
 
For the hypothesis test, the information was analyzed using the p-value of each 
coefficient. The p-value represents the probability, assuming that the null 
hypothesis is true, of obtaining a value of the t-statistic at least as contradictory 
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to the null hypothesis as the value calculated from the available sample. The p-
value was used to make the final decision of whether to reject the null hypothesis 
by comparing it with the significance level, which is the probability of making 
a Type I error. Type I errors occur when the null hypothesis is rejected when it 
is true. The p-values must be lower than 0.05 to reject the null hypothesis. 

2.6.2 Panel Data Analysis 
Panel data combines cross-sectional and time-series data. It is a dataset in which 
the behavior of several entities is observed across time, or in this case, across a 
given length of highway. Under the context of pavement management, the panel 
data analysis is composed of cross-sectional information of pavement sections 
(information like pavement type or geographical location), combined with 
performance indicators, condition or distress measurements over the length of a 
highway. The main difference that distinguishes the panel model from the cross-
sectional regression model is that the panel model incorporates heterogeneity 
among the pavement sections. This means this model can incorporate different 
mix-type specific parameters. There are two major types of panel models: fixed-
effects and random-effects; however, this project focused solely on the former.
In the fixed-effects model, mix-type specific parameters are treated as fixed
parameters to be estimated.

2.6.2.1 Fixed-Effects Regression 
Fixed-effects regression explores the relationship between predictor and 
outcome variables within an entity. In this case, that entity happens to be the 
pavement surface information. Each entity has its own individual characteristics 
that may or may not influence the predictor variables. In the fixed-effects model 
(Equation 2.12), the subject specific variable, ci, is a fixed and unknown 
parameter. The variable represents the omitted variables that are unknown to the 
data analyst, but constant over time 𝜇𝜇𝑖𝑖𝑡𝑡 is assumed to vary non-stochastically 
over i or t (Li et al., 2017): 

where xit is the independent random variable at a time t, ci is an unknown 
intercept for each entity, and 𝑢𝑢𝑖𝑖𝑡𝑡 is the error term. The fixed effect model can 
also be formulated as a dummy variable regression model (Equation 2.13). This 
is useful as dummy variable regression allows the user to see where the surface 
type variable is incorporated into the prediction for friction (Li et al., 2017): 

where νj is a binary dummy representing the surface type, and γj is the regression 
coefficient for νj.
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The research team used the dummy variable representation of fixed effects panel 
data analysis to develop a prediction model. Previous research showed that 
prediction models that incorporate surface information have much more 
predictive power compared to a multiple regression model that solely uses 
texture as its predictors (Zuniga, 2017). 

2.7 Stationary Field-Testing Data Processing 
This section explains the methodology employed to compute the summary 
statistics using the static and smaller scale measuring equipment. The data 
collected with this equipment was used for validation of the measurements 
collected with the data collection prototype. 

The DFT measurements are easy to process given that the software automatically 
computes the friction force at 20, 40, 60, and 80 km/h. For the SPT, the method 
involves applying a known volume, which is typically 25 mm3, of either solid 
glass spheres of uniform size or Ottawa natural silica sand on a relatively 
uniform, not distressed section of the pavement surface. The sand is later spread 
in a circular pattern with a standardized spreading tool. Once the roughly circular 
patch of sand is made, four equally spaced diameters are measured and averaged 
to compute the area of the sand patch. The known volume of sand is then divided 
by the area of the circle using Equation 1.1 and reported as the MTD. The CTM 
measurements are similar to the DFT in the sense that the software automatically 
computes the MPD and RMS along a circular path of a pavement surface. The 
only quality control that must be performed to guarantee good-quality data is 
that the percentage of spikes within the data obtained must never exceed 10%; 
otherwise, the entire dataset is considered invalid. Data collected with the LLS 
was subjected to the same data processing described under Section 2.3, given 
that the laser software in this device is similar to the sensor used in the data 
collection prototype. 
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 Validation of Proposed Friction 
Prediction Methods 
3.1 Field Test Design 
3.1.1 Dynamic Testing  

After developing a methodology to process and analyze the texture and friction 
data, the research team selected a total of twenty-nine pavement sections close 
to the city of Austin that cover a wide range of different textures and skid 
numbers encountered in Texas (Figure 3.1). These sections were used to validate 
the methodology established in Chapter 2. A tabulation specifying the highway 
and the surface present at each section is presented in Table 3.1.  

 

 
Figure 3.1 Map location of tested pavement section 

 

Out of the twenty-nine sections, fifteen were surveyed using only the data 
collection prototype. These sections were tested to ensure it worked as expected. 
Once it was proven to be fully operational, the research team selected fourteen 
other sections with varying pavement surfaces to be tested simultaneously with 
the prototype and TxDOT’s LWT. The GripTester from the prototype and LWT 
characterized the skid of the road in terms of GN and SN, respectively. Both 
measurements have a scale from 0.0 to 1.0, where zero represents a frictionless 
surface and one is a surface with maximum friction. These data was used to 
validate the friction measurements obtained with the GripTester. Lastly, a group 
of three sections that had been tested by both TxDOT and CTR was selected. 
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The goal of these sections was to validate the readings obtained by the texture 
and friction measuring devices used by the performing and receiving agencies.  

 

Table 3.1 Final selection of pavement surfaces tested with data collection 
prototype 

Highway Pavement Surface Number of    Samples 

FM 0973 Chip Seals 6 
FM 0973 Dense Fine Mix 1 
SH 0095 Dense Coarse Mixes 3 
US 0079 Chip Seal 1 
US 0079 Porous Friction Coarse 5 
US 0079 Dense Fine Mix 1 
FM 1063 Chip Seal 2 
FM 0112 Chip Seal 2 
US 0077 Stone Matrix Asphalt 1 
US 0077 Dense Coarse Mix 1 
SH 0021 Stone Matrix Asphalt 1 
SH 0021 Chip Seal 1 
US 0290 Porous Friction Coarse 2 
US 0290 Microsurfacing 1 
US 0290 Stone Matrix Asphalt 1 

 

3.1.2 Stationary Testing 
Several tests were performed with stationary equipment on the inner wheel path 
of the outer lane where TxDOT’s LWT and the GripTester had previously tested. 
The stationary equipment involved in the test were:  
 
• CTM (ASTM E 2157),  
• SPT (ASTM E 965), 
• LLS, and 
• DFT (ASTM E 1911). 

 
Section 1.1.3 describes these equipment devices in detail. Due to the test being 
stationary, traffic control was requested with the aid of TxDOT to help the 
researchers conduct the test safely along SH95, US79, and US290. The testing 
for all three sites was performed over the course of three days where SH95 and 
US79 were tested on the same day. The time of testing was in the morning 
starting at 8:00 AM and ending at 11:00 AM, the temperature at each site ranged 
between 70 and 80°F, and the pavement was completely dry at the moment of 
testing. 
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At each test location, measurements were taken 30 meters in the direction of 
travel from a known GPS position where the LWT and GripTester started 
measuring. The additional 30 meters are based on the LWT needing 
approximately 30 meters from their software initialization to the stage that it 
starts collecting skid measurements. This guarantees that all stationary testing 
was done within the region that the LWT collected skid measurements. The 
research team tested three times along the inner wheel path in a span of 20 
meters, that is, 10 meters between each measurement spot as shown in the 
schematic on Figure 3.2.  

 

 
Figure 3.2 Schematic showing the set up for the three locations tested with stationary 

equipment 
 

The order and procedure for testing went as follows: a researcher started with 
the CTM, carefully positioning the instrument along the inner wheel path. Chalk 
was used to mark the perimeter of the CTM’s chassis for the rest of the devices 
to collect in the same spot. This was done for all three locations spaced apart by 
10 meters. Once the CTM collected data in the first location and moved on to 
the second one, the LLS followed and collected texture data on the first marked 
spot. Once the LLS testing was completed and moved on the second location, 
the DFT followed and tested the marked spot. In parallel to these tests, another 
researcher performed the SPT adjacent to the marked spots, approximately 0.5 
meters in-front. Figure 3.3 shows a schematic visually describing the location 
of each testing device. Performing the full battery of testing at each location 
would take approximately 1.5 hours to complete.  
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Figure 3.3 Schematic with locations of each device where the tests would be run 

 

The texture measurements collected with the in-motion laser sensor were later 
cross-verified with readings from the CTM, LLS, and SPT. The skid 
measurements collected with the GripTester and LWT were correlated with the 
DFT. Figure 3.4 shows each of the stationary pieces of equipment operating in 
field conditions. 

 

 
Figure 3.4: Stationary testing conducted, DFT (A), CTM (B), LLS (C) and SPT (D) 
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3.2 Data Collected 
This section presents all the summary statistics for texture and friction that were 
collected during the experiment. Multiple statistics were computed from the two-
dimensional profiles of the pavement to characterize the pavement texture when 
using the laser sensor from the prototype. These statistics are summarized in 
Tables 3.2 and 3.3. Not all of the statistics are included in the final specification 
for the mathematical models, but this is the full set of statistics that were 
computed and tested to find the ideal combination that yielded most accurate 
prediction of pavement skid resistance. The average of all texture statistics for 
the twenty-nine sections have been summarized in Tables 3.4 and 3.5.  
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Table 3.2 List of summary texture statistics (amplitude statistics) 

Statistic Equation 

Maximum Height 
(Rz)  

Absolute Height 
Average 

(Ra)  

Height Variance 
(Rv)  

Root Mean Square 
(RMS)  

Skewness 
(Rs) 

 

Kurtosis 
(Rk)  

Profile Solidity Factor 
(Rr)  

Ten-Point Mean 
Roughness (Rt) 

 

Mean Profile Depth  
(MPD)  
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Table 3.3 List of summary texture statistics (spacing, hybrid and spectral 
statistics) 

Statistic Equation 

Mean Cross Width 
(Cm)  

Cross Width 
Variance 

(Cv)  

Cross Width 
Skewness 

(Cs)  

Two-Point Slope 
Variance (SV2) 

 

Six-Point Slope 
Variance (SV6)  

PSD Intercept The intercept of the linearized PSD plot (Description provided in 
TM3) 

PSD Slope The slope of the linearized PSD plot (Description provided in 
TM3) 
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3.2.1 Skid-Texture Prototype Data 
Table 3.4 Summary texture statistics for all pavement surfaces using data collection prototype 

Section 
Number 

𝑹𝑹𝒛𝒛 
(mm) 

𝑹𝑹𝒂𝒂 
(mm) 

𝑹𝑹𝒗𝒗 
(mm2) 

𝑹𝑹𝑹𝑹𝑹𝑹 
(mm) 

𝑹𝑹𝒔𝒔 
(mm3) 

𝑹𝑹𝒌𝒌 
(mm4) 

𝑹𝑹𝒓𝒓 
(unitless) 

𝑹𝑹𝒕𝒕 
(mm) 

𝑹𝑹𝑴𝑴𝑴𝑴  
(mm) 

1 3.80 0.64 0.75 0.80 0.10 0.24 -1.06 -0.06 1.57 
2 4.49 0.77 1.01 0.96 -0.10 0.03 -0.92 -0.27 1.78 
3 4.83 0.87 1.21 1.07 0.13 -0.21 -1.08 0.07 2.08 
4 3.38 0.53 0.52 0.68 0.10 0.47 -1.05 -0.06 1.38 
5 2.77 0.40 0.29 0.52 -1.04 1.56 -0.50 -0.93 0.81 
6 2.49 0.34 0.22 0.45 -1.10 1.88 -0.49 -0.86 0.71 
7 2.64 0.36 0.25 0.48 -1.07 1.85 -0.50 -0.90 0.76 
8 3.30 0.51 0.51 0.66 0.09 0.60 -0.97 -0.14 1.31 
9 4.28 0.70 0.83 0.88 -0.14 0.20 -0.87 -0.34 1.66 
10 1.90 0.23 0.11 0.31 -1.28 2.84 -0.46 -0.71 0.50 
11 5.06 0.91 1.35 1.12 0.02 -0.21 -1.01 -0.06 2.12 
12 6.51 1.11 2.06 1.40 -0.99 0.84 -0.50 -2.19 1.87 
13 1.98 0.24 0.12 0.32 -1.45 3.53 -0.41 -0.83 0.48 
14 6.95 1.23 2.51 1.54 -0.80 0.41 -0.57 -1.89 2.19 
15 7.01 1.23 2.52 1.55 -0.82 0.45 -0.57 -1.94 2.18 
16 6.08 1.02 1.76 1.29 -1.08 1.09 -0.47 -2.21 1.68 
17 6.37 1.08 1.98 1.37 -1.01 0.93 -0.50 -2.14 1.83 
18 3.88 0.66 0.74 0.82 -0.49 0.20 -0.71 -0.69 1.40 
19 4.26 0.71 0.88 0.89 -0.48 0.28 -0.72 -0.71 1.54 
20 5.45 1.09 1.86 1.31 -0.23 -0.50 -0.86 -0.45 2.23 
21 6.93 1.38 2.84 1.66 -0.02 -0.59 -0.92 -0.35 2.89 
22 4.13 0.60 0.66 0.79 -1.38 2.25 -0.39 -1.78 1.02 
23 2.05 0.25 0.13 0.34 -1.21 2.73 -0.47 -0.73 0.56 
24 3.28 0.42 0.36 0.58 -1.77 4.03 -0.33 -1.62 0.69 
25 3.19 0.53 0.51 0.67 -0.37 0.17 -0.80 -0.46 1.18 
26 6.53 1.03 1.87 1.33 -1.06 1.28 -0.49 -2.25 1.82 
27 3.12 0.39 0.30 0.52 -1.36 3.50 -0.46 -1.18 0.78 
28 6.71 1.26 2.54 1.55 -0.78 0.21 -0.57 -1.86 2.10 
29 4.12 0.59 0.64 0.78 -1.46 2.62 -0.38 -1.83 0.98 
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Table 3.5 Summary texture statistics and friction for all pavement surfaces using data collection prototype, continuation 

Section 
Number 

𝑪𝑪𝒎𝒎 

(mm) 

𝑪𝑪𝒗𝒗 

(mm2) 

𝑪𝑪𝒔𝒔 

(mm3) 

𝑹𝑹𝑽𝑽𝟐𝟐 

(mm) 

𝑹𝑹𝑽𝑽𝟔𝟔 

(mm) 

𝑴𝑴𝑹𝑹𝑴𝑴_𝒊𝒊𝒊𝒊𝒕𝒕 

(unitless) 

𝑴𝑴𝑹𝑹𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔 

(unitless) 

1 4.26 31.0 1.84 0.74 0.69 13.4 10.2 
2 5.10 35.6 1.51 0.82 0.78 12.2 10.7 
3 5.52 36.4 1.41 0.85 0.82 18.4 10.9 
4 4.08 33.7 2.00 0.60 0.55 5.95 9.97 
5 2.68 9.24 1.67 0.69 0.65 13.6 9.06 
6 2.46 8.62 1.80 0.60 0.56 10.5 8.77 
7 2.47 8.38 1.75 0.63 0.60 11.8 8.87 
8 4.03 31.2 2.01 0.60 0.56 4.18 9.87 
9 5.03 31.4 1.46 0.74 0.72 13.4 10.5 
10 2.04 8.04 2.17 0.50 0.46 4.89 8.07 
11 5.56 34.7 1.36 0.88 0.85 15.9 11.0 
12 5.49 25.7 1.12 1.32 1.28 61.3 11.3 
13 2.07 8.39 2.16 0.53 0.48 5.47 8.09 
14 6.14 32.2 1.09 1.27 1.24 51.1 11.6 
15 6.25 33.3 1.07 1.25 1.23 45.8 11.6 
16 5.26 22.8 1.14 1.24 1.22 62.6 11.1 
17 5.67 26.1 1.10 1.23 1.20 57.8 11.3 
18 3.79 18.2 1.53 0.79 0.75 22.8 10.2 
19 3.99 19.4 1.52 0.84 0.80 25.4 10.4 
20 5.13 25.7 1.25 1.12 1.08 39.1 11.2 
21 6.01 34.7 1.21 1.31 1.28 33.3 11.9 
22 3.22 10.4 1.46 1.05 1.01 37.5 9.85 
23 1.97 6.35 1.97 0.58 0.53 6.06 8.10 
24 2.99 11.4 1.71 0.82 0.78 20.1 9.20 
25 3.89 26.4 1.79 0.66 0.61 6.35 9.87 
26 5.06 24.5 1.18 1.25 1.21 58.4 11.2 
27 2.39 9.17 1.97 0.81 0.74 14.0 9.01 
28 6.12 30.8 1.08 1.33 1.31 49.6 11.6 
29 3.39 12.6 1.52 0.99 0.95 34.0 9.87 
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3.2.2 Summary of Skid Measured by TxDOT and CTR 
The research team also compared the skid data that TxDOT collected with the 
LWT. Table 3.6 shows the average skid reading of GripTester and the LWT for 
the fourteen section that were surveyed using both pieces of equipment. It should 
be noticed that the correlation is very high even though both pieces of equipment 
measure skid resistance at different transverse positions. The few sections with 
higher discrepancies were found were those where the surface texture on the 
inner wheel path and along the centerline were significantly different. Although 
the friction prediction models were developed for the GripTester, they could be 
easily recalibrated to predict SN as measured by the LWT used by TxDOT. 
 

Table 3.6 Average skid measurements collected with data collection prototype and 
LWT 

Highway Surface Average Grip 
Number (GN) 

Average Skid 
Number (SN) 

FM 0973 Chip Seal 0.38 0.21 
FM 0973 Chip Seal 0.35 0.23 
SH 0095 Dense Mix 0.45 0.35 
US 0079 Porous Friction Coarse 0.57 0.44 
FM 0112 Chip Seal 0.92 0.75 
FM 0112 Chip Seal 0.94 0.59 
US 0077 Stone Matrix Asphalt 0.67 0.44 
US 0077 Dense Mix 0.48 0.23 
SH 0021 Stone Matrix Asphalt 0.76 0.48 
SH 0021 Chip Seal 0.66 0.39 
US 0290 Porous Friction Coarse 0.50 0.37 
US 0290 Dense Mix 0.53 0.33 
US 0290 Porous Friction Coarse 0.25 0.23 
US 0290 Stone Matrix Asphalt 0.62 0.46 

 

3.2.3 Stationary Field-Testing Data 
This sub-section presents all the results from the stationary testing devices. The 
SPT summarized the texture of the pavement surface using the MTD (Table 
3.7). The CTM summarized the texture of the pavement sections by providing 
an average MPD and RMS (Table 3.8). The DFT summarized the skid of the 
pavement section using the F20, F40, F60 and F80 measurements. That is, the 
equivalent skid number at a speed of 20, 40, 60 and 80 kph (Table 3.9). The LLS 
device was used to compute and validate all the statistics computed using the 
data collection prototype, every statistic shown in Tables 3.2 and 3.3 was 
recomputed using this stationary laser sensor. However, due to complications in 
the field, the LLS was not used on US-290. Results from the LLS are 
summarized in Tables 3.10 and 3.11. 
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Table 3.7 Summary data collected using the SPT 

Highway 
Name Surface Type Volume 

(mm3) 

Average 
Diameter 

(mm) 

Mean Texture 
Depth 
(mm) 

SH 0095 #1 
Dense Coarse 

Mix 25,000 
194 0.84 

SH 0095 #2 197 0.82 
SH 0095 #3 202 0.78 
US 0079 #1 

Porous Friction 
Coarse 25,000 

121 2.21 
US 0079 #2 128 1.95 
US 0079 #3 130 1.91 
US 0290 #1 

Porous Friction 
Coarse 25,000 

121 2.21 
US 0290 #2 115 2.41 
US 0290 #3 117 2.33 

 
Table 3.8 Summary data collected using the CTM 

Highway 
Name Surface Type MPD (std deviation) RMS (std 

deviation) 
SH 0095 #1 

Dense Coarse Mix 
0.78 mm (0.08 mm) 0.53 mm (0.08 mm) 

SH 0095 #2 0.87 mm (0.15 mm) 0.57 mm (0.23 mm) 
SH 0095 #3 0.72 mm (0.13 mm) 0.45 mm (0.11 mm) 
US 0079 #1 

Porous Friction 
Coarse 

1.95 mm (0.27 mm) 1.50 mm (0.36 mm) 
US 0079 #2 1.85 mm (0.15 mm) 1.36 mm (0.18 mm) 
US 0079 #3 1.89 mm (0.55 mm) 1.63 mm (0.75 mm) 
US 0290 #1 

Porous Friction 
Coarse 

1.99 mm (0.39 mm) 1.63 mm (0.42 mm) 
US 0290 #2 1.86 mm (0.17 mm) 1.51 mm (0.26 mm) 
US 0290 #3 1.83 mm (0.36 mm) 1.46 mm (0.31 mm) 

 
Table 3.9 Summary data collected using the DFT 

Highway 
Name Surface Type 

Speed 
km/h 
(mph) 

DFT Skid Number 

Section #1 Section #2 Section 
#3 

SH 0095 Dense Coarse 
Mix 

20 (12) 0.36 0.40 0.39 
40 (24) 0.36 0.41 0.38 
60 (36) 0.34 0.39 0.38 
80 (48) 0.14 0.10 0.13 

US 0079 Porous Friction 
Coarse 

20 (12) 0.35 0.39 0.35 
40 (24) 0.36 0.39 0.33 
60 (36) 0.35 0.38 0.32 
80 (48) 0.16 0.17 0.12 

US 0290 Porous Friction 
Coarse 

20 (12) 0.21 0.19 0.21 
40 (24) 0.22 0.20 0.22 
60 (36) 0.23 0.21 0.22 
80 (48) 0.08 0.08 0.15 
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Table 3.10 Summary texture statistics (amplitude) for all pavement surfaces using the LLS 

Section 
Number 

𝑹𝑹𝒛𝒛 
(mm) 

𝑹𝑹𝒂𝒂 
(mm) 

𝑹𝑹𝒗𝒗 
(mm2) 

𝑹𝑹𝑹𝑹𝑹𝑹 
(mm) 

𝑹𝑹𝒔𝒔 
(mm3) 

𝑹𝑹𝒌𝒌 
(mm4) 

𝑹𝑹𝒓𝒓 
(unitless) 

𝑹𝑹𝒕𝒕 
(mm) 

𝑹𝑹𝑴𝑴𝑴𝑴 
(mm) 

SH 0095 #1 2.86 0.37 0.25 0.49 -0.79 1.46 -0.61 -0.71 0.76 
SH 0095 #2 2.80 0.36 0.23 0.47 -0.83 1.60 -0.57 -0.76 0.75 
SH 0095 #3 2.50 0.31 0.18 0.41 -0.86 1.88 -0.57 -0.69 0.66 

Avg. SH 0095 2.72 0.35 0.22 0.46 -0.83 1.65 -0.58 -0.72 0.72 
US 0079 #1 9.86 1.45 4.04 1.89 -0.95 1.82 -0.48 -3.44 2.49 
US 0079 #2 8.78 1.37 3.37 1.73 -0.84 1.20 -0.52 -2.66 2.21 
US 0079 #3 7.98 1.19 2.56 1.53 -1.01 1.65 -0.48 -2.78 1.87 

Avg. US 0079 8.87 1.34 3.32 1.72 -0.93 1.56 -0.49 -2.96 2.19 
 

Table 3.11 Summary texture statistics (spacing, hybrid and spectral) and friction for all pavement surfaces using the LLS 

Section 
Number 

𝑪𝑪𝒎𝒎 
(mm) 

𝑪𝑪𝒗𝒗 
(mm2) 

𝑪𝑪𝒔𝒔 
(mm3) 

𝑹𝑹𝑽𝑽𝟐𝟐 
(mm) 

𝑹𝑹𝑽𝑽𝟔𝟔 
(mm) 

𝑴𝑴𝑹𝑹𝑴𝑴_𝒊𝒊𝒊𝒊𝒕𝒕 
(unitless) 

𝑴𝑴𝑹𝑹𝑴𝑴_𝒔𝒔𝒔𝒔𝒔𝒔 
(unitless) 

SH 0095 #1 4.22 18.3 1.66 0.37 0.36 23.0 8.79 
SH 0095 #2 3.90 17.1 1.86 0.38 0.37 23.2 8.64 
SH 0095 #3 3.82 14.5 1.62 0.35 0.34 19.6 8.35 

Avg. SH 0095 3.98 16.6 1.71 0.37 0.36 21.9 8.59 
US 0079 #1 10.2 111 1.44 1.17 1.16 229 11.7 
US 0079 #2 11.0 135 1.43 1.13 1.12 189 11.6 
US 0079 #3 10.1 116 1.47 1.01 1.00 166 11.3 

Avg. US 0079 10.4 121 1.45 1.10 1.09 195 11.5 
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3.3 Statistical Analysis 
This section presents all the analyses and mathematical models that were 
developed using the data presented in Section 3.2. 
 

3.3.1 Comparison of Skid Measuring Devices 
The first analysis conducted was a comparison between the skid measurements 
collected with the LWT and the GripTester. The standard deviation and mean of 
all skid measurements were computed for each pavement section tested with 
both pieces of equipment and summarized in Table 3.12. Note that the mean GN 
of the GripTester is always higher than the mean SN from the LWT. This is 
because of two reasons: 1) The LWT fully locks its measuring wheel before 
collecting skid, whereas the GripTester’s tire uses a 15% fixed slip to collect 
friction measurements. The physics behind measuring skid with a fully locked 
wheel and one with a fixed slip imply that the wheel with a fixed slip will have 
more grip with the pavement than the wheel that is fully locked. 2) The LWT 
measures the inner wheel path of the lane its testing, whereas the GripTester 
measures the part of the lane that is in between the inner and outer wheel paths. 
The aggregates on the inner and outer wheel paths experience significant 
polishing from the constant flow of traffic relative to the aggregates located in 
between the wheel paths. That polishing action results in the aggregates along 
the inner wheel path having a smoother texture and thus a reduced skid compared 
to the less polished aggregates in between the wheel paths. 
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Table 3.12 Comparison between the LWT and GripTester skid measurements 

Highway Surface Mean SN Std. Dev. 
SN Mean GN Std. Dev. 

GN 
FM 0973 Chip Seal 0.21 0.05 0.38 0.06 
FM 0973 Chip Seal 0.23 0.04 0.35 0.03 
SH 0095 Dense Mix 0.35 0.02 0.45 0.02 

US 0079 Porous Friction 
Coarse 

0.44 0.01 0.57 0.03 

FM 0112 Chip Seal 0.75 0.12 0.92 0.04 
FM 0112 Chip Seal 0.59 0.11 0.94 0.02 

US 0077 Stone Matrix 
Asphalt 

0.44 0.02 0.67 0.01 

US 0077 Dense Mix 0.23 0.02 0.48 0.03 

SH 0021 Stone Matrix 
Asphalt 

0.48 0.04 0.76 0.04 

SH 0021 Chip Seal 0.39 0.07 0.66 0.15 

US 0290 Porous Friction 
Coarse 

0.37 0.01 0.50 0.03 

US 0290 Dense Mix 0.33 0.03 0.53 0.02 

US 0290 Porous Friction 
Coarse 

0.23 0.01 0.25 0.04 

US 0290 Stone Matrix 
Asphalt 

0.21 0.05 0.62 0.06 

TxDOT’s LWT Standard Deviation 0.04 
UT's GripTester Trailer Standard Deviation 0.04 

 
Furthermore, notice that in Table 3.13 the standard deviations for GN and SN are 
quite similar with the exception of three pavement sections. In sections along 
FM112, notice that standard deviation for the SN is much higher than that of the 
GN. This is because these two sections are chip seals with coarse aggregates that 
are high in macrotexture and also have some of the highest skids, relative to the 
other sections. The LWT’s measuring wheel has problems fully locking on 
pavements with high macrotexture and high skid, hence why the standard 
deviations are so high. In the case of one of the sections along SH0021, the standard 
deviation of GN is much higher than the SN. The reason for this disparity lies in 
the fact that this section had asphalt patches that cover most of the right lane. Many 
of these patches do not go up to the inner wheel path, thus TxDOT’s LWT was not 
capturing the pavement patches, whereas the GripTester was capturing the multiple 
changes in skid from alternating between asphalt patches and the chip seal. 
However, even when including those three sections with high standard deviations, 
we can see that the average standard deviation across all section from the 
GripTester from the prototype and TxDOT’s LWT are almost identical. 
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3.3.2 Skid along Different Locations in the Lane 
Given the difference in the mean value of skid between the GN and SN 
measurements, the research team decided to investigate the difference in skid 
between the inner wheel path and the pavement in between wheel paths. Three 
sections with different pavement surfaces were selected to assess this difference, 
these sections were #6 which is a PFC, #4 which is a chip seal with minor 
flushing and #25 which is also a chip seal, but with multiple asphalt patches. 
Figure 3.5 shows plots of each section where the grip number is mapped against 
the distance travelled for the equipment. Notice that in all three plots the skid for 
the in between wheel path is always either about equal or higher than the skid in 
the inner wheel path. This corroborates the suspicion that the in-between wheel 
path aggregates have reduced polishing and thus a skid that at least as high as 
the one present in the inner wheel path. The research team also believes that the 
magnitude of the difference between the in between and inner wheel path can 
also be a function of the type of mix, the traffic volume and the age of the 
pavement. 
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Figure 3.5: Distance versus friction plot for FM 0973 (top), US 0079 (middle), and SH 

0021 (bottom) 
 

The research team wanted to further investigate this phenomenon, thus, for 
section #6, a survey was done where the GripTester alternated between 
surveying the inner wheel path (IW) and the pavement in between wheel paths 
(IBW). Figure 3.6 shows the different grip numbers obtained as the skid trailer 
alternated between wheel paths. The plot further confirms that the pavement in 
between wheel paths always has on average a higher skid number than the inner 
wheel path and that the magnitude of that difference in skid is dependent on other 
factors such as age of the pavement or traffic volume. 
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Figure 3.6: Distance versus friction plot for FM973 travelling southbound alternating 

between the inner wheel path and the pavement in between wheel paths 
 

3.3.3 Influence of Speed of Vehicle on Skid Measurements 
A common assumption often made when assessing skid resistance is that skid 
reduces as the speed of the vehicle increases. The research team quantified the 
impact that speed has on the measured GN by driving on a straight roadway at 
varying speeds while measuring the skid resistance. The research team started 
the test by driving increments of 0.5 miles at speeds of 40, 50 and 60 mph, which 
tend to be typical highway speeds across the United States. The skid number was 
then plotted against the speed of the measuring vehicle (Figure 3.7) and a 
regression analysis was performed on the data. The resulting equation that 
captures the effect of speed on GN for the range of speeds tested is shown in 
Equation 3.1. 
 

 
 

 
Figure 3.7: Regression plot between the speed of measuring vehicle and the GN 
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In Equation 3.1, the constant 0.58 represents the skid on the pavement 
associated with all the factors that are not considered in the regression analysis. 
That would include factors such as the surface type, the texture on the surface, 
wetness of the surface, etc. The coefficient for speed can be interpreted as the 
effect that a unit increment in the speed of the measuring vehicle has on the 
pavement’s GN. The data indicates that for every additional mph in the speed of 
the vehicle (starting at 40 mph and ending at 60 mph), the GN is reduced by 
0.003. Even though the data shows with 95% confidence that this reduction in 
skid due to increasing speeds is statistically significant, the value of 0.003 is too 
low to cause any dramatic drop in the skid of the road for the range of speeds 
being measured. Even if the vehicle went from 40 to 60 mph, the predicted 
reduction in skid would be equal to 0.06, which is not a significant difference. 
However, it should also be noted that it is possible that once a vehicle drives 
faster than 60 mph, the reduction in skid becomes much more drastic than 0.003 
for every unit increment in speed. However, due to safety concerns and the 
posted speed limit of the roadway tested, the research team was unable to test 
this hypothesis 

 

3.3.4 Comparison between stationary and dynamic data 
To validate the measurements collected with prototype, a series of tests of 
hypothesis were conducted to check if the average texture or skid measurement 
is significantly different from the average measurements taken with the 
stationary equipment. The null hypothesis for this test is that the measurement 
from the prototype is identical to the measurement from the stationary 
equipment. In statistical notation this test can be written as: 
 

 
 

where �̂�𝛽𝑃𝑃 is the average measurement computed using data from the prototype 
and �̂�𝛽𝑃𝑃 is the average measurement computed using data from stationary 
equipment. Since every piece of equipment collected more than 500 profiles per 
section tested, it is reasonable to assume that the sample average measurement 
of each piece of equipment follows a normal distribution, by the central limit 
theorem. These tests were conducted with a significance level of 5%. If the P-
value of the test statistic is lower than the significance level, then the null 
hypothesis is rejected. This means there is strong evidence to prove that the 
statistics computed with the prototype are different from those of the statistic 
equipment. Tables showing all the average values that were tested for each piece 
of equipment and every statistic is shown in Appendix B. The results for the 
hypothesis conducted can be seen in Table 3.13 for all the skid measurements, 
and Table 3.14 for all the relevant texture measurements. 
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From the hypothesis tests, it can be seen that the measurements from both the 
LWT and GripTester closely resemble the F60 skid measurements for the DFT. 
Surprisingly, the DFT measurements at 80 km/h are drastically different from 
the SN and GN measurements. Furthermore, the LWT appears to be more in line 
with the DFT than the GripTester, but this outcome is a result of the 
GripTester outputting higher values of GN relative to the SN. This result 
indicates that it is probably best to convert the measurements of GN to SN 
using linear regression. This analysis is discussed in Section 3.3.7. In terms of 
texture, it appears that the prototype measurements are consistent with the 
LLS for most of the statistics. The statistics where these metrics differ the 
most is the cross-width variance, where the measurements of the LLS are an 
order of magnitude larger than those of the prototype. It should also be noticed 
that the MPD measured by the CTM was significantly different than the once 
collected by the LLS and the prototype. This was an unusual result since the 
LLS and CTM have been tested in the past and results show that their 
estimates of MPD are quite common. 

Table 3.13 Summary of hypothesis tests conducted 

Test Highway P-value Conclusion 

GripTester’s GN and DFT’s F20 
SH 0095 0.002 Reject null 
US 0079 0.000 Reject null 
US 0290 0.254 Fail to reject null 

LWT SN and DFT’s F20 
SH 0095 0.364 Fail to reject null 
US 0079 0.000 Reject null 
US 0290 0.879 Fail to reject null 

GripTester’s GN and DFT’s F40 
SH 0095 0.001 Reject null 
US 0079 0.000 Reject null 
US 0290 0.978 Fail to reject null 

LWT SN and DFT’s F40 
SH 0095 0.995 Fail to reject null 
US 0079 0.000 Reject null 
US 0290 0.923 Fail to reject null 

GripTester’s GN and DFT’s F60 
SH 0095 0.002 Reject null 
US 0079 0.000 Reject null 
US 0290 0.975 Fail to reject null 

LWT SN and DFT’s F60 
SH 0095 0.774 Fail to reject null 
US 0079 0.021 Reject null 
US 0290 0.973 Fail to reject null 

GripTester’s GN and DFT’s F80 
SH 0095 0.000 Reject null 
US 0079 0.000 Reject null 
US 0290 0.000 Reject null 

LWT SN and DFT’s F80 
SH 0095 0.000 Reject null 
US 0079 0.000 Reject null 
US 0290 0.000 Reject null 
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Table 3.14 Summary of hypothesis tests conducted 

Test Highway P-value Conclusion 

MPD from Prototype and CTM 
SH 0095 0.025 Reject null 
US 0079 0.018 Reject null 
US 0290 0.033 Reject null 

MPD from Prototype and LLS 
SH 0095 0.099 Fail to reject null 
US 0079 0.152 Fail to reject null 
US 0290 ~ ~ 

RMS from Prototype and CTM 
SH 0095 0.354 Fail to reject null 
US 0079 0.004 Reject null 
US 0290 0.654 Fail to reject null 

RMS from Prototype and LLS 
SH 0095 0.785 Fail to reject null 
US 0079 0.004 Reject null 
US 0290 ~ ~ 

SV2 from Prototype and LLS 
SH 0095 0.028 Reject null 
US 0079 0.367 Fail to reject null 
US 0290 ~ ~ 

Rs from Prototype and LLS 
SH 0095 0.158 Fail to reject null 
US 0079 0.000 Reject null 
US 0290 ~ ~ 

Rr from Prototype and LLS 
SH 0095 0.233 Fail to reject null 
US 0079 0.687 Fail to reject null 
US 0290 ~ ~ 

Rt from Prototype and LLS 
SH 0095 0.167 Fail to reject null 
US 0079 0.214 Fail to reject null 
US 0290 ~ ~ 

Cv from Prototype and LLS 
SH 0095 0.000 Reject null 
US 0079 0.000 Reject null 
US 0290 ~ ~ 

3.3.5 Cluster Analysis 
Based on the elbow plot and dendrogram of the data shown in Figures 2.47 and 
2.48, there appears to be six clusters that correspond to six different flexible 
pavement surfaces. Upon closer inspection of these clusters, the six surfaces 
were identified to be: 

1. Chip seals with medium to low macrotexture (raveling, flushing or
aggregate polishing)

2. Chip seals with high macrotexture (good condition)
3. Dense coarse mixes (Types D and C)
4. Dense fine mixes (Type F and TOM)
5. Open Friction Coarse surfaces (PFC)
6. Stone Matrix Asphalts (SMA)



104 
 

 
This information was then corroborated with the expert opinion of the TxDOT’s 
Maintenance Division personnel. This further demonstrated that the texture data 
alone appears to have enough information such that six distinct asphalt pavement 
surfaces can be accurately identified solely using texture statistics computed 
from 2D pavement profiles. Furthermore, the cluster analysis showed that both 
algorithms yield similar results, meaning that regardless of which of the two 
algorithms is chosen, pavement surface classification is almost identical. 
Nonetheless, the research team recommends using agglomerative hierarchical 
clustering with a “ward” linkage method. This is because, hierarchical clustering 
is always guaranteed to converge on the same final output, whereas the output 
of K-means can vary depending on the initial guess for cluster centroids. 
 
The results of the clustering analysis are promising as they indicate that the 
texture information can be used to predict the type of asphalt surface present in 
a highway. Using this information, the research team developed a decision tree 
classifier that predicts pavement surface type using texture statistics. 

 

3.3.6 Decision Tree Classifier 
To determine whether a classification decision tree model is accurate or not, a 
statistic known as the F1 score is computed. The F1 score is the harmonic mean 
between the precision and the recall of the model. Precision is the proportion of 
correctly classified groups over the total number of observations for each group. 
Recall is the proportion of correctly classified groups over the total number of 
predictions for each group. The reason for which classification models favor the 
F1 score as opposed to the accuracy of the model, is because the F1 score is the 
most robust measure of accuracy for imbalanced datasets. That is, if one of the 
groups being classified has significantly more representation than the other 
groups. This happens to be the case in this analysis since there are few data points 
for high macrotexture chip seals compared to the open mixes and dense mixes 
in the dataset. Only four sections out of the six that can be detected are used for 
the pavement surface classifier, this is because in terms of their surface skid 
properties SMA, dense fine mixes and dense coarse mixes behave in similar 
ways, thus they can be categorized together into a single group. Thus, the four 
pavement surfaces the classifier will predict are: 
 
1. High macrotexture chip seals (HM CS) 
2. Low to medium macrotexture chip seals (LM CS) 
3. Dense mix surfaces and SMA (DMS), and 
4. Open-graded mix surfaces (OMS) 

 
The set of all statistics shown in Section 2.4.1 was used to train the first decision 
tree. However, only the most relevant statistics were kept for the final decision 
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tree in a process of elimination by trial and error. Furthermore, 80% of the data 
was used to train the model and the remaining 20% was used to test the model. 
The results of this testing are summarized in Table 3.15 
 

Table 3.15 Classification report obtained for the most recent decision tree model 

Surface Precision Recall F1 Score # of Data 
Points 

HM CS 0.81 0.83 0.82 431 
LM CS 0.91 0.92 0.92 801 
DMS 0.99 0.99 0.99 910 
OMS 0.99 0.98 0.99 700 

   Overall Model 
Accuracy 0.94 

 

Table 3.14 shows that at an individual level, the smallest accuracy the decision 
tree model has is 82%, in F1 Score, when classifying HM CS. This means that 
on average, it is expected that out of 100 sections that are HM CS, 82 of them 
will be accurately classified as HM CS. This percentage is relatively low 
compared to the other F1 scores because as soon as chip seal with high 
macrotexture start experiencing aggregate polishing after years of wear and tear, 
they start behaving more like a LM CS. In the few instances where HM CS is 
misclassified, it is misclassified as a LM CS, and this can be confirmed by 
looking at the confusion matrix shown in Figure 3.8. The confusion matrix is a 
visual way of assessing the accuracy of the model. The confusion matrix is read 
row by row. To know if the model is accurate, the main diagonal of the confusion 
matrix should be populated with a high percentage of the observations. The 
observations on the main diagonal indicate that the predictions made by the 
model are correct. Observations off of the main diagonal are false positives or 
false negatives. On the aggregate, the overall accuracy of model measured in 
terms of F1 score is 94%. This value is extremely high and proves that there is 
enough information obtained from the texture profile alone, to make a model 
that is applicable and reliable for predicting the pavement surface at a network 
level. 
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Figure 3.8: Unnormalized confusion matrix (left), normalized confusion matrix (right) 

3.3.7 Conversion from GN to SN 
The ultimate goal of this study is to estimate skid in terms of SN using texture 
data. Therefore, it is important for the research team to convert the measured GN 
into SN. A linear regression suggests that the relation between GN and SN is 
linear and can be estimated by Equation 3.2. In this equation, the parameter 𝛾𝛾0 
represents characteristics of the skid number that are not captured in the 
regression model. For example, the difference in skid between the inner wheel 
path and the aggregates in between wheel paths. Whereas the parameter 𝛾𝛾1 
captures the effect that a unit increment in the measured GN has on the SN of 
the road. The data indicate that for every unit increment in GN, the SN increases 
by 0.634. The goodness of fit of this relation is 0.69 in R2 which from a statistical 
point of view is a good fit to the data. A summary of the regression analysis is 
shown in Table 3.16 and a visualization of the average grip number versus the 
skid number for the sections is shown in Figure 3.9. 

Table 3.16 Linear regression summary analysis for transforming GN to SN 

Regression Summary 
Parameter Coefficient Influence (P-value) 
Intercept β0 0.025 (0.240) 

Grip Number β1 0.634 (0.000) 
Goodness of Fit 

Multiple R 0.831 
Adjusted R2 0.691 

Residual Standard Error 8.71 

This linear transformation on the GN does not affect the goodness of fit 
statistics obtained when regressing the predicted SN on the texture and surface
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information parameters. This is because linear transformations on the random 
variable being predicted does not affect the correlation between the random 
variables. This linear transformation merely changes the magnitude of the 
regression coefficients. 

Figure 3.9: Scatterplot of the average GN versus the average SN collected across all 
pavement sections 

3.3.8 Skid Prediction: Multiple Linear Regression 
Once the pavement surface has been predicted, several multiple linear regression 
analyses were conducted to identify the variables that could capture friction 
more accurately. The regression model finally chosen is one that combines two 
macro-texture statistics (𝑅𝑅𝑠𝑠 and RMS) and three dummy variables that represent 
the different types of surfaces: 

1. Chip seals with high macrotexture (these are the base case),
2. Chip seals with medium to low macrotexture (LM CS),
3. Dense Mix Surfaces (DMS)
4. Open Mix Surfaces (OMS)

There are two reasons why this model uses four pavement surfaces as opposed 
to the six that could be predicted with the decision tree classifier. First, the 
regression analysis showed that, at least in terms of skid resistance, there only 
appears to be a significant difference between LM CS, HM CS, OMS and DMS. 
The influence of texture in dense fine mixes and stone matrix asphalts appears 
to have the same effects on skid resistance as the dense coarse mixes, thus they 
were all combined into a single surface category called “Dense Mix Surfaces”. 
Second, the multiple regression equation is capable of achieving a predictive 
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power in order of 0.80 in adjusted R2 just by using these four surfaces, 
including the other two surfaces does not appear to have a significant 
improvement in predictive power and also increases the likelihood of 
overfitting the regression model. The final regression equation to predict skid 
using field texture data is shown in Equation 3.3. 

Equation 3.3 is a combination of dummy variables and continuous random 
variables. This means the intercept β0 represents the pavement surface type that 
will be used as a baseline. The baseline surface in Equation 4.3 are chip seals 
with high macrotexture. However, the magnitude of β1 does not have a direct 
physical interpretation. The intercept term is just the point at which the 
regression line for chip seals with high macrotexture crosses the y-axis when 
extrapolated backwards. The coefficient β1 represents the effect that a unit 
increment in skewness has on the skid of the pavement. The data indicate that 
for every unit increment in skewness, the skid is reduced by 0.207. This means 
that regardless of the surface type, the more negative texture present at the 
pavement surface, the more skid resistance the roadway provides. The 
coefficient β2 represents the effect that a unit increment in RMS has on the skid 
of the pavement. The data indicates that for every unit increment in RMS, the 
skid is increased by 0.147. This means that pavements with lots of high 
variability (high deviations from the horizontal plane) offer, on average, more 
skid resistance than pavements with smaller deviations. The coefficient β3

represents the differential effect between a LM CS and HM CS. The data 
indicates LM CS have on average 0.167 less skid than HM CS. The coefficient 
β4 represents the differential effect between a DMS and HM CS. The data 
indicates dense mixes have on average 0.302 less skid than HM CS. Lastly, the 
coefficient β5 represents the differential effect between OMS and HM CS. The 
data indicates that OMS have on average 0.418 less skid than HM CS. A 
summary of the regression model and the goodness of fit statistics is provided in 
Table 3.17. 
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Table 3.17 Linear regression summary analysis for predicting SN 

Regression Summary 

Parameter Coefficient Influence (P-value) 

Intercept 𝛽𝛽0 0.318 (0.000) 

Skewness (𝑅𝑅𝑠𝑠) 𝛽𝛽1 -0.207 (0.000) 

Root Mean Square 
(RMS) 𝛽𝛽2 0.147 (0.000) 

Chip Seal Surface (LM 
CS) 𝛽𝛽3 -0.167 (0.003) 

Dense Mix Surface 
(DMS) 𝛽𝛽4 -0.302 (0.000) 

Open Mix Surface 
(OMS) 𝛽𝛽5 -0.418 (0.000) 

Goodness of Fit 

Multiple R 0.837 

Adjusted 𝑅𝑅2 0.801 

Residual Standard Error 0.05 
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 Conclusions and 
Recommendations 
4.1 Recommendations 

Based on the results of the various analyses presented in this report, the research 
team compiled the following conclusions and recommendations for the 
estimation of pavement friction using field profile data. 

 

4.1.1 Texture and Skid Measuring Equipment 
The research team recommends TxDOT to conduct their texture and skid data 
collection simultaneously by attaching a line laser scanner that collects 
transverse pavement profiles along the inner wheel path of the lane. This is to 
ensure that high quality texture data are collected on the same wheel path that 
the LWT tests for skid. The sampling rate of this laser must be such that at least 
100 pavement profiles are collected for every skid measurement collected to 
replicate the results obtained with the prototype equipment. Current laser 
technology is unable to capture the full first decade of microtexture while driving 
at highways speeds. However, this component of texture is not required to 
achieve a high enough prediction of skid. Its incorporation in the future, will 
undoubtedly improve the friction prediction model. 
 
For the short- to medium-term, TxDOT should continue to collect skid using the 
same protocols currently in place. The skid and texture data collected every 
fiscal year can be used to validate the skid prediction model proposed in this 
study. Once TxDOT is convinced that the model performs as expected, then the 
LWT can be kept for project level skid collection and forensic investigations; 
while at the network level, a surveying vehicle equipped with a fast, high-
definition laser sensor can be used to collect the texture data needed to predict 
the SN with a high degree of accuracy. 

 

4.1.2 Data Processing 
Once data are collected, a thorough data processing must take place. Quality 
control criteria for the skid data and texture data must be enforced to ensure that 
the data used in the mixed model is of the highest possible quality. TxDOT 
already has good quality control measures to ensure their skid measurements are 
valid, so this recommendation will not address that aspect. The texture data 
should be processed using a four-step protocol to ensure the texture data are of 
good quality before computing summary statistics. This process should include 
the following steps:  
 
1. Invalid point removal 
2. Noise detection and removal 
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3. Data imputation 
4. Profile detrending 

 
The research team carried out a meticulous investigation in each of those areas 
and developed robust algorithms capable of performing all these tasks. The first 
step is critical: to separate dropout values from valid measurements. The next 
step requires having an algorithm that can consistently and reliably detects and 
removes noise from profiles to prevent outliers from biasing the texture 
statistics. A robust imputation algorithm capable of handling missing data values 
to remove any bias that could be introduced by missing data, i.e., the noise that 
was removed at the previous step. Finally, an efficient detrending algorithm that 
centers all the profiles to an elevation of 0.0 mm in the shortest amount of time. 
Data transformation was not deemed necessary as spectral parameters were not 
used in the final model specification. 
 
The research team developed the SOFA to perform to automate the processing 
of all the texture profile collected. SOFA is a self-calibrating algorithm. This 
means that once new data are collected, the algorithm assesses the data and 
determine what the best thresholds are to eliminate all the noise from the signal. 
Once calibrated, SOFA automatically trims the profile to remove invalid data 
points and denoise the profile using an eight-stage filtering process. Once all 
dropouts, spike and flat lines have been removed, the missing data points are 
imputed using linear interpolation as it has been proven the most efficient and 
simplest imputation algorithm. Finally, SOFA executes a regression detrending 
algorithm to remove any linear trends from the pavement profile. The output of 
the SOFA is a pavement profile with a minimal amount of noise (if any), that is 
centered around a flat horizontal plane at an elevation of 0.0 mm. The processed 
pavement profiles are then fed to a different algorithm that automatically 
computes all the summary texture statistics that are used for predicting the 
surface and skid resistance of the pavement. These statistics must be computed 
for each individual profile and then averaged across each 0.1-mile section, in 
such a way that there is one of each texture statistic for each skid measurement 
in Pavement Analyst (PA). 

 

4.1.3 Surface Prediction 
Decision trees work using binary decisions, are easy to code and are commonly 
used in PA’s current framework. The research team highly encourages their use 
as the pavement surface classifier of preference. The decision tree developed 
was trained using over 10,000 pavement profiles coming from different types of 
flexible pavement surfaces and tested with over 4,000 profiles. The research 
team meticulously conducted pre-pruning and post-pruning on the decision tree 
model to avoid overfitting and have a robust classifier with a high degree of 
accuracy. The classifier requires the following texture statistics: 
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• Cross-Width Variance (𝐶𝐶𝑣𝑣) 
• Ten Point Mean Roughness (𝑅𝑅𝑡𝑡) 
• Solidity Factor (𝑅𝑅𝑟𝑟) 
• Two-Point Slope Variance (𝑆𝑆𝑆𝑆2) 

 
Using these statistics, the decision tree will output one out of four flexible 
pavement surfaces: HM CS for a chip seal with high macrotexture, LM CS for a 
chip seal with low macrotexture, DMS for stone matrix asphalts or dense mixes 
(both coarse or fine), and OMS for the open graded mixes or PFCs. The 
pavement surface should be predicted using the decision tree framework shown 
in Figure 4.1.  
 

 
Figure 4.1: Final decision tree classifier framework 

 

This model was proven to have a global accuracy of 94% in F1-score, meaning 
that out of 100 different flexible pavements surface that it encounters, it 
accurately predicts the surface type of 94 of them. The pavement surface must 
be predicted across all the profiles collected within each PA pavement section. 
The mode of all predictions within each section is assigned as the pavement 
surface for that whole section. Finally, the dummy variable for LM CS, DMS 
and OMS must be created. These dummy variables take the value of one if the 
prediction for the 0.1-mile section matches the surface type of that dummy 
variable and zero otherwise. 

 

4.1.4 Skid Prediction 
The regression model of preference to predict the skid resistance of the pavement 
with an accuracy of 0.80 measured in adjusted 𝑅𝑅2 is a dummy variable multiple 
regression that uses two summary texture statistics and three surface information 
dummy variables. The statistics required to run the regression model are: 
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• Third Moment of Profile Elevation or Skewness (Rs),
• Standard Deviation of Profile Elevation or Root Mean Square (RMS),
• Dummy variable for LM CS (LCMS),
• Dummy variable for Dense Mixes and SMAs (DMS), and
• Dummy variable for Open Mixes or PFCs (OMS).

The regression model generates exactly four lines, as shown in Figure 4.2. One 
is the predicted SN for HM CS which are the base case given the texture 
statistics, the predicted SN for LM CS given the texture statistics, the predicted 
SN for DMS given the texture statistics and the predicted SN for OMS given the 
texture statistics. This regression model assumes that effect of skewness and root 
mean square on the skid of the pavement are linear and constant. Moreover, that 
relation is also dependent upon the material and gradation properties of the type 
of surface of each pavement and that effect is captured by the dummy variables. 
The final regression model is presented in Equation 4.1. 

Figure 4.2 Visual depiction of the dummy variable multiple regression equation 

4.2 Conclusion 
During this study a new prototype system for simultaneously collecting high-
definition texture and skid resistance data at highway speeds was developed. 
With the data collected, effective prediction models for pavement skid resistance 
in terms of SN were developed as a function of texture statistics and pavement  
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surface information. Currently, the equipment and associated hardware 
and software perform data acquisition only. The data processing is 
performed aposteriori using the algorithms developed in this project. It is 
recommended that research is continued or implemented to develop a system 
that can perform both data acquisition and data processing on real time. 
Multiple texture statistics were calculated and regressed against the SN to 
find the best correlations between the explanatory variables and the 
dependent variable. The major advantages of the equipment developed can 
be summarized as follows: 

• It eliminates uncertainty due to a time gap between the data collection 
for pavement texture and skid,

• Both types of data are collected on the same wheel path,
• The equipment has been proven to work at the same speed the locked 

wheel testers operate (80 kph or 50 mph), and
• The laser sensor used is powerful enough the capture the full 

spectrum of macrotexture and, with future advancements in 
technology, it is expected that the first decade of microtexture could 
be captured in the near future.

A meticulous cluster analysis showed that a combination of amplitude, spacing 
and hybrid statistics is required in order to create a pavement surface classifier. 
This study showed that 𝑅𝑅𝑟𝑟, 𝑅𝑅𝑡𝑡, 𝐶𝐶𝑣𝑣 and 𝑆𝑆𝑆𝑆2 were the minimum numbers of 
statistics capable of reaching a predictive power in the order of 94% in F1 Score 
using a decision tree framework. The implications of having such a strong 
predictive power for pavement surface could go far beyond just predicting 
pavement friction. That type of information could also be used in models that 
predict rolling resistance, splash and spray, pavement/noise, among many other 
pavement surface interactions.  

This research study has demonstrated that texture statistics computed using high-
definition texture profile instrumentation have a statistically significant 
influence on pavement skid resistance and can be used for two major purposes: 
1) the prediction of the pavement surface and 2) the prediction of friction with a
high degree of accuracy. In fact, these technological advances and the
incorporation of artificial intelligence allowed for the development of predictive
friction models more powerful than previously possible. Based on the analyzed
data, there appears to be a clear relationship between the texture statistics and
friction; however, this relationship is not unique and depends on the surface type.
Strong correlation can be found among these two factors, but texture statistics
alone can only explain up to 50% of the variance within the skid resistance of
flexible pavements when all mixtures are considered together. Accounting for
the surface type and clustering pavement sections based on a prediction of the
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pavement surface increases the explanatory power of texture statistics as high 
80% in adjusted R2.  
 
To further improve this study, the research team recommends exploring the use 
of 3D texture statistics in predicting pavement friction or a complete new set of 
statistics. Furthermore, the research team encourages repeating this type of study 
on rigid pavement to assess if texture statistics are capable of distinguishing 
between different types of concrete pavement surface finishings or texturing, as 
well as predicting their skid resistance with an accuracy that is at least as good 
as the one found in this study. Lastly, the research team recommends repeating 
this study once laser technology has a high enough resolution and sampling rate 
to capture the first decade of microtexture. Accounting for macro and 
microtexture, as well as the surface information is bound to increase the 
predictive power of the models to 90% in adjusted R2. 
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Appendix A (Images of Pavement Sections) 
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Appendix B (Cross Validation Tables) 
 

Comparison of skid measurements 

Highway GripTester 
(GN) LWT (SN) DFT (F60) 

Section #1 Section #2 Section #3 
SH 0095 0.45 0.35 0.34 0.39 0.38 
US 0079 0.57 0.44 0.35 0.38 0.32 
US 0290 0.25 0.23 0.23 0.21 0.22 

 
Comparison of MPD measurements 

Highway 
Prototype 

MPD 
(mm) 

LLS MPD 
(mm) 

CTM MPD 
(mm) 

Section 
#1 

Section 
#2 

Section 
#3 

Section 
#1 

Section 
#2 

Section 
#3 

SH 0095 0.71 0.76 0.75 0.66 0.78 0.87 0.72 
US 0079 2.12 2.49 2.21 1.87 1.95 1.85 1.89 
US 0290 2.1 ~ ~ ~ 1.99 1.86 1.83 

 
Comparison of RMS measurements 

Highway 
Prototype 

RMS 
(mm) 

LLS RMS 
(mm) 

CTM RMS 
(mm) 

Section 
#1 

Section 
#2 

Section 
#3 

Section 
#1 

Section 
#2 

Section 
#3 

SH 0095 0.45 0.49 0.47 0.41 0.53 0.57 0.45 
US 0079 1.12 1.89 1.73 1.53 1.5 1.36 1.63 
US 0290 1.55 ~ ~ ~ 1.63 1.51 1.46 

 
Comparison of SV2 measurements 

Highway Prototype SV2 
(mm) 

LLS SV2 
(mm) 

Section #1 Section #2 Section #3 
SH 0095 0.6 0.37 0.38 0.35 
US 0079 1.32 1.17 1.13 1.01 

 
Comparison of Rr measurements 

Highway Prototype Rr 

(unitless) 

LLS Rr 

(unitless) 
Section #1 Section #2 Section #3 

SH 0095 -0.49 -0.61 -0.57 -0.56 
US 0079 -0.5 -0.48 -0.52 -0.49 

 
Comparison of Rt measurements 

Highway Prototype Rt 

(mm) 

LLS Rt 

(mm) 
Section #1 Section #2 Section #3 

SH 0095 0.6 0.37 0.38 0.35 
US 0079 1.32 1.17 1.13 1.01 
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Comparison of Rs measurements 

Highway Prototype Rs 

(mm3) 

LLS Rs 
(mm3) 

Section #1 Section #2 Section #3 
SH 0095 -1.1 -0.79 -0.83 -0.86 
US 0079 -0.99 -0.95 -0.84 -1.01 

 
Comparison of Cv measurements 

Highway Prototype Cv 

(mm2) 

LLS Cv 

(mm2) 
Section #1 Section #2 Section #3 

SH 0095 8.62 18.3 17.1 14.5 
US 0079 25.7 111 135 116 
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Appendix C (Value of Research) 
 

A detailed analysis of the economic benefits brought about by TxDOT Research 
Project 0-7031 is explained in this appendix. The analysis on a macroeconomic 
level evaluates the long-term effects of sponsoring this research project are 
examined. The monetary savings obtained at both the macro and microeconomic 
levels are utilized in a net present value (NPV) cost-benefit analysis using the 
template provided by TxDOT. 
 
Motor-vehicle accidents can occur due to numerous reasons; however, the most 
common potential causes can be classified into three broad categories: driver-
related, vehicle-related and highway condition-related. Driver related accidents 
involve drivers being distracted, sleepy or in a state that impairs their ability to 
drive a vehicle safely. It is not possible for TxDOT to fully prevent driver-
related, vehicle-related, or environmental-related accidents, as many of those 
causes are beyond their control. However, TxDOT can mitigate crashes across 
all three categories by improving the pavement surface friction.  
 
The ultimate goal of this project is to improve safety across Texas’ highway 
network by having complete information of the friction conditions on a annual 
basis, which allows for proper maintenance scheduling whenever friction falls 
below a given threshold. The reduction in skid due to wet-weather conditions is 
of particular interest, given that reduced skid under wet conditions increases the 
probability of accidents to occur and increases the likelihood of hydroplaning. 
In the United States, a significant number of wet-weather crashes occur on a 
yearly basis that not only result in large economic losses but could even result in 
the death or full incapacitation of individuals involved. It is because of this that 
ensuring adequate skid resistance is essential to improve public safety. The 
macroeconomic analysis quantifies an estimate of the average economic loss that 
is associated with motor-vehicle accidents in Texas and predict the monetary 
savings that can be obtained by having full coverage of friction levels on an 
annual basis, which results in better allocation of funds to preventive 
maintenance projects to bring the skid back to serviceable levels and ultimately 
reduces the number of crashes. 

 

Average Economic Loss Associated with Motor 
Vehicle Accidents 

 

The National Safety Council in the United States has developed a guide to 
calculating the average costs associated with motor-vehicle injury based on 
accident severity, as shown in Table C.1. These average cost estimates account 
for wage and productivity losses, medical expenses, administrative expenses, 
motor-vehicle damage, and employer’s uninsured costs. However, these 
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quantities are conservative as they do not account for the value of lost quality of 
life, which has to be empirically calculated (Injury Facts, 2021). All costs are 
based on 2019 dollars thus, they were converted to 2021 dollars using a 
consumer price index of 8.19% based on current inflation trends.  

 
Table C.1: Average Economic Cost by Injury Severity or Crash 2019 (Injury Facts, 

2021) 

Accident Severity 
Ave. Economic Cost in 

2019 
(in millions of dollars) 

Ave. Economic Cost in 
2021 

(in millions of dollars) 
Death $1.704 $1.840 

Disabling $0.098 $0.106 
Evident $0.029 $0.031 
Possible $0.023 $0.025 
No Injury $0.012 $0.014 

Property Damage $0.004 $0.005 
 

To estimate the total monetary costs of motor-vehicle accidents in Texas, the 
research team used the TxDOT yearly report on “Urban and Rural Crashes and 
Injuries by Severity for 2020”. The research team does not know what the current 
trend for crashes in Texas is, thus the values for 2020 were used in this analysis. 
The total expected cost of motor-vehicle accidents in Texas across all levels of 
accident severity was computed by multiplying the average economic cost in 
2021 dollars by the number of accidents for each level of accident severity. A 
table summarizes the number of crashes in the state of Texas by crash severity 
and the expected monetary cost for each accident is shown in Table A.2. 

 
Table C.2: Summary of Urban and Rural Crashes and Injuries by Severity for 2020 

in Texas 

Accident Severity Number of crashes Expected Monetary Cost 
(in millions of dollars) 

Death 3,542 $6,520 
Disabling 12,107 $1,280 
Evident 46,209 $1,420 
Possible 82,663 $2,090 
No Injury 308,136 $4,160 

Property Damage 21,892 $109 
Total Expected Cost (in millions of dollars) $15,579 

 
Assuming that the number of crashes in Texas across each category remain 
relatively unchanged from 2020, the total expected cost incurred by both the 
state and its constituents is estimated to be about $15.579 billion. 
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Potential Outcome of Project Implementation 
Consider the case where the products from this project are implemented, 
enabling TxDOT to have reliable friction estimates across the entire highway 
network. Having complete friction information on their network allows the 
maintenance division to identify hot spots in along the network with low skid 
resistance and address the issue by applying a high-friction courses of chip seals 
to improve the road’s friction. Based on the regression analysis conducted in this 
study, it was seen that the average difference between a chip seal with low 
macrotexture and one with high macrotexture is in the order of 13 in SN. It can 
be conservatively assumed that this is the average increase in SN once a seal 
coat is laid on top of a low friction road. This is a conservative estimate because 
the average difference between a high macrotexture chip seal and the other mixes 
a much higher. From data collected by the research team, the lowest skid that 
was found from a sample of 20 pavement surfaces was SN = 25. Once a seal 
coat is laid, the pavement section is expected to have a skid number of 38. 
 
To translate this improvement in skid to a reduction in crashes, the study by 
Burchett and Rizenbergs (1982) was utilized. The study sought to quantify the 
effect that the level of skid resistance had on wet weather accidents. The study 
found that a significant increase in the percentage of wet pavement accidents 
occurs when SN70R drops below 27. SN70R stands for the skid number 
measured at 70 km/h using a ribbed tire. Their fitted model can be found in 
Figure C.1. The equation for the fitted model in Figure C.1 was used to estimate 
the average percentage of wet weather accidents expected to occur on a road 
given its skid number. The percentage of wet weather accidents before and after 
the treatment were computed to be 33.6% and 23.8%, respectively. This means 
that by applying a seal coat to improve the skid, we could expect an average 
reduction of 9.7% in wet weather accidents on every pavement section that is 
treated. Being conservative, it can be assumed that the average reduction in wet 
weather crashes due to all the maintenance work across the network is 5%, half 
of what the equation in Figure C.1 estimates. 
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Figure C.1: Percentage of Wet Crashes Varying with SN70R (Burchett and Rizenbergs, 

1982) 
 

Data from the Crash Records Information System (CRIS for short) indicates that 
out of the total crashes that occurred in Texas in 2020, about 16% occurred 
during wet weather conditions (TxDOT, 2021). Meaning that out of the total of 
398,622 crashes 75,927 were wet weather-related crashes. It is now assumed that 
dry weather crashes remain unchanged. Given these assumptions, the number of 
wet and total accidents after TxDOT treats low skid sections are 72,130 and 
470,752, respectively. All that remains is to match the proportion of crashes 
across each category to the ones observed in 2020 and the expected monetary 
cost after treatment can be computed. Table C.3 summarizes all the information 
needed to compute the total expected monetary cost after implementation. 
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Table C.3: Summary of information to compute total expected monetary cost after 
implementation 

Parameter Value 

Number of accidents in 2020 474,549 

Wet weather accidents 75,927 

Avg. reduction in wet weather 
accidents 5% 

Wet weather accidents after 
treatment 72,130 

Number of accidents after 
treatment 470,752 

Accident 
Severity 

Proportion 
of total 

h

New Number of 
Crashes 

Expected Monetary Cost 
(in millions of dollars) 

Death 0.01 3,514 $6,510 

Disabling 0.03 12,010 $1,280 

Evident 0.10 45,839 $1,420 

Possible 0.17 82,002 $2,090 

No Injury 0.65 305,671 $4,150 

Property 
Damage 

0.05 21,717 $109 

Total Cost (in millions of dollars) $15,559 

After maintenance improvement, the total cost for the state and its constituents 
is $15.559 billion. This is a total savings of almost $20 million dollars at a 
macroeconomic state-wide level. 

NPV Cost Benefit analysis 
The final economic analysis was conducted by using the Excel template 
provided by TxDOT. This template performs a net present value (NPV) cost-
benefit analysis by considering: 

1. Project budget: the total amount of money allocated to finance this research
project, measured in dollars,

2. Project duration: the agreed upon timeframe for project completion,
measured in years,

3. Expected value per year: An estimation of the annual savings incurred by
TxDOT after implementing the project’s products, measured in dollars,
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4. Expected value duration: the timeframe over which this economic analysis 
is conducted, measured in years, and 

5. Discount rate: the interest rate used in discounted cash flow analysis to 
determine the present value of future cash flows, measured as a percentage. 

 
Many of the inputs were dictated by TxDOT or could not be varied as they were 
based on values from the contract; however, there are two terms, Exp. Value (per 
Yr) and Expected Value Duration (Yrs), which the research team had full 
freedom to vary. The values associated with those two terms (highlighted in 
yellow at the top of Figure C.2) governed the outputs of the economic analysis.  
 

Inputs for the economic analysis 
 

The project budget was set to $348,740. This value was the agreed upon budget 
as stipulated in the project’s contract team. The inputted project duration was 
2.3326 years. The University Handbook (2016) states that the project duration 
is not rounded. The project commenced on January 1, 2019 and the termination 
date is December 31, 2021. There are 852 days from the start date of the project 
to the end date (with the end date included), which equates to 2.3326 years. The 
expected value per year was $20 million. This input is the total savings that was 
computed for the macro analysis. As mentioned in the previous sections most of 
the values used in both analyses were as conservative as possible. The expected 
value duration of the project was assumed to be 10 years to reflect a potential 
timeframe between the inception of this project and the time it takes for it to be 
fully implemented. Finally, the input for the discount was 5% as recommended 
by the University Handbook (2016). The inputs and outputs of this economic 
analysis can be seen at the top of Figure C.2 and a graphical representation of 
the NPV measured in millions of dollars over the timeframe of the economic 
analysis can be seen at the bottom of Figure C.2.  
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Figure C.2 Inputs and outputs of NPV cost-benefit analysis (top), graphical 

representation of NPV over the course of ten years (bottom) 
 

Conclusion 
 

The expected economic savings that this project could generate for road users 
and TxDOT as a whole was estimated to be $200 million over the course of 10 
years. From a purely mathematical point of view, this project is paid back in a 
small fraction of a year (0.017) and has a cost benefit ratio of 474. These 
extremely high values are not uncommon given for projects that deal with driver 
safety. The recommended technology from this project allows for more 
information of skid along any given section on the TxDOT network by providing 
measurements at any distance, continuously. Giving TxDOT added information 
on skid to identify and apply corrective measures. A tool that saves money for 
the agency and lives on the road. 
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